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Abstract

We study the effects of intensifying competition for contracts in the context of U.S. Defense

procurement. Conceptually, opening contracts up to bids by more participants leads to

lower awarding prices, but may hinder buyers’ control over non-contractible characteristics

of prospective contractors. Leveraging a regulation that mandates agencies to publicize

certain contract opportunities, we document that expanding the set of bidders reduces award

prices, but deteriorates post-award performance, resulting in more cost overruns and delays.

To further study the scope of this tension, we develop and estimate a model in which the

buyer endogenously chooses the intensity of competition, invited sellers decide on auction

participation and bidding, and the winner executes the contract ex-post. Model estimates

indicate substantial heterogeneity in ex-post performance across contractors, and show that

simple adjustments to the current regulation that account for adverse selection could provide 2

percent of savings in procurement spending, or $104 million annually.
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1 Introduction

Buyer-seller transactions—concerning everything from standardized goods such as office supplies

or fuels, to customized needs such as construction projects or consultancy services—are often

governed by competitively-awarded procurement contracts. The pervasive use of competition to

assign contracts stems from the notion that competitive bidding can be a powerful tool to reduce

procurement prices (Bulow and Klemperer, 1996). Yet, expanding competition for contracts that

involve customized obligations and deliverables could allow under-qualified contractors to win,

leading to deficient execution ex-post. Therefore, the assessment of intensifying competition for

procurement contracts should account both for potential benefits due to price reductions, as well

as for potential adverse effects due to poor execution.

An empirical investigation of this trade-off is complicated, in part due to the need for

comprehensive data on contract execution and a compelling research design. In this paper,

we make progress on both of these fronts to study the equilibrium effects of enhancing competition

for procurement contracts in acquisition prices and execution performance. We focus on U.S.

Department of Defense (DOD) procurement, a setting of relevance given that it awards $500 billion

in contracts per year, representing a sizable fraction of the U.S. economy. Moreover, this setting

provides us with policy variation in the degree of contract competition, as well as with detailed

administrative data throughout the life-cycle of each DOD contract, from design through execution.

Our empirical strategy exploits regulation that requires agencies to publicize contract

opportunities that are expected to exceed $25,000 in value through a centralized online platform.

Analyzing contract awards between $10,000 and $40,000, we exploit the discontinuous nature of

the publicity requirements to estimate the effect of enhanced contract advertisement on four sets

of outcomes: (i) the level of competition for the award, (ii) characteristics of the buyer-contractor

relationship, (iii) procurement costs, and (iv) post-award contractor performance. By providing

evidence on all of these fronts, we comprehensively characterize the consequences of changing the

degree of competition for procurement contracts through this advertising channel. Furthermore,

we exploit rich heterogeneity in the types of contracts that the DOD awards to assess the role of

contract incompleteness in explaining our results.1

To estimate the price effects of contract publicity, we propose a method that recovers these effects

from discontinuities in the conditional densities of publicized and non-publicized contracts. We

then estimate the effects of publicizing contract opportunities on three sets of non-price outcomes—

1Focusing on a window around the policy threshold implies that our sample does not include contracts related to
major DOD acquisitions (e.g., fighter jets or weapon systems). However, the median contract awarded by the DOD is
worth $19,800 and 68% of contracts obligate less than $40,000. Focusing on this range provides our results with a higher
level of external validity, as contracts in our sample are much more similar to non-defense agencies and the private sector,
compared to large-scale defense contracts. It is also worth noting that the volume of contracts impacted by the publicity
regulation makes its implications economically meaningful. In 2018 alone, the DOD publicized contract solicitations
valued at $ 5.56 billion dollars via the online platform FedBizzOpps.gov.
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the level of competition, the characteristics of the selected vendors, and post-award performance—

using a Regression Discontinuity Design (RDD). We find that contract awards advertised through

the government platform see an increase in the number of bids of roughly 60%, confirming that

the policy translates into a substantial increase in participation. We show that these marginal

participants are competitive, leading to changes in the characteristics of winning firms: awardees of

publicized solicitations are, on average, 14% less likely to be small businesses, and are located 60%

farther from the buying agency. Furthermore, we find that increased competition leads to contract

price reductions: publicized contracts are, on average, awarded at 6% lower prices. However,

advertised contracts result in worse ex-post performance: the probabilities of experiencing cost

overruns and delays in the implementation stage increase by 7% and 8%, respectively. The latter

results are mostly driven by service contracts—as opposed to goods purchases—and by contracts

that we ex-ante characterize as more complex. These results are stable across different estimation

approaches and robustness checks that account for possible sources of bias.2

Taken together, our reduced-form results suggest that promoting competition has mixed effects

on contract outcomes: while it reduces the winning bid, it leads to worse outcomes at the execution

stage. We find that suppliers’ identity matters in explaining the variation in contract outcomes.

Promoting competition hinders buyers’ ability to restrict participation to qualified vendors, while

attracting new participants who tend to perform poorly ex-post.

Motivated by this evidence, we develop and estimate an equilibrium model of competition for

procurement contracts. The model allows us to estimate the underlying firm characteristics that

shape adverse selection in this market. We also use the estimated parameters to study the role

of buyer preferences in the decision to endogenously promote competition, and we evaluate the

consequences of counterfactual policies aimed at reducing public spending.

Our model consists of four stages that cover the different phases of a procurement project. First,

a buyer decides on the degree of competition by choosing whether to openly publicize the contract

or to invite only specific contractors. Second, firms that receive information about the contract

simultaneously decide whether to prepare a bid. They do this by comparing the expected utility

of participating with the idiosyncratic cost of preparing the bid, and decide to participate if the

latter is sufficiently low. Third, each bidder submits a bid that depends on the realization of a

production cost estimate, consisting of a private component and a common component, which

accounts for unobserved heterogeneity (Krasnokutskaya, 2011; Haile and Kitamura, 2019).3 The

award mechanism is a first-price, sealed-bid auction. Fourth, the awarded contractor executes the

contract. Execution performance depends on the existence and magnitude of cost overruns, which

stem from an idiosyncratic shock realized ex-post. The model incorporates the potential asymmetry

2Our RDD setting is characterized by measurement error in the assignment variable. We address this concern directly,
yet ultimately find that it has a quantitatively modest effect on the results.

3Controlling for unobserved heterogeneity is important since, in the procurement setting, bidders likely have more
information about the auctioned contracts than the econometrician.
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between bidders who are informed directly by the buyer and those who participate only when

the contract is openly publicized. Moreover, the model does not impose restrictions on buyers’

preferences over outcomes and allows for idiosyncratic preferences for certain vendors that are

uncorrelated with contract outcomes.

We estimate our model using data on publicity choices, auction participation, contract prices,

and observed cost overruns. We exploit variation in market structure and the publicity threshold

to identify the model’s parameters. Our estimates highlight an asymmetry between the sellers

whom the buyer would invite directly in the absence of publicity and those who bid only when

the solicitation is openly publicized. The added bidders have slightly lower production costs and

substantially lower participation costs, which makes them more likely to participate ceteris paribus.

They are also considerably more prone to experience cost overruns in the execution stage. On

the other hand, buyers show a preference for lower prices, lower cost overruns, and incumbent

suppliers.

By specifying the selection process that leads to buyers’ publicity choices, the model allows us

to extrapolate the local effects estimated at the policy discontinuity to the full sample. We then use

our model parameters to estimate the effects of promoting competition through publicity under the

current regulation, as well as under alternative policy scenarios. Overall, our findings are consistent

with the estimated reduced-form effects. Increasing competition has heterogeneous effects, leading

to cost reductions when the transaction unit is relatively simple. However, competition backfires

when the contract involves a complex product category, as increases in cost overruns exceed price

reductions at the award stage.

Our results show that imposing regulation to promote bidder participation involves a risk of

allowing under-qualified firms to bid. An alternative policy design is to rely on buyers (i.e. each

local agency) to decide on whether to publicize each contract. Delegating this decision to the

buyer involves a trade-off. On the one hand, more discretion allows the buyer to tailor decisions,

mitigating the potential risks of intensifying competition. On the other hand, the buyer could

use this added discretion opportunistically, restricting competition to favor specific contractors.

We use our model to simulate equilibrium outcomes under a deregulated setting in which the

buyer decides whether to publicize each contract. We find that delegating this decision to the

buyer is welfare-enhancing when the transaction unit is complex: on average, the buyer achieves

better outcomes than in regulated settings with either zero or full publicity. However, when the

transaction unit is relatively simple, imposing full-publicity rules is convenient as the risks at the

execution stage are minor.

We next use our model to identify improvements to the current policy design, which depart from

uniform publicity requirements. Policies that regulate competition in most public procurement

settings—including the one we study—are strikingly simple: they do not differ depending on

whether the transaction involves a commodity or a highly customized service. This mismatch
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between unsophisticated policies and a highly diverse set of transactions suggests meaningful room

for improvement in policy design. We study the effects of introducing publicity requirements that

are tailored to the complexity of the purchase, thus leveraging the benefits of intense competition

for simple products, while limiting its adverse effects on complex products. We find that the

cost-minimizing level of publicity for fully-specified products is 100%, whereas more complex

product categories should require low use of publicity. We find that this reduces average defense

procurement costs by 2 percent, or $104 million annually.

This paper contributes to several branches of the literature. First, it contributes to the literature

on incentives in procurement. The procurement problem deals with two challenges stemming

from asymmetric information: the ex-ante screening of vendors (Laffont and Tirole, 1993) and

ex-post costly adaptations due to contract incompleteness (Williamson, 1976; Goldberg, 1977;

Hart and Moore, 1988). Our paper examines these two asymmetries jointly and documents that

increasing competition exacerbates adverse selection ex-ante, causing additional adaptation costs

ex-post. Related papers study ex-ante and ex-post outcomes in procurement by manipulating

either the awarding mechanism (Spulber, 1990; Bajari et al., 2009; Decarolis, 2014) or the flexibility

of the contract structure (Crocker and Reynolds, 1993; Bajari and Tadelis, 2001). Instead, our

setting provides exogenous variation in the intensity of competition, keeping fixed the awarding

mechanism and contract design, which allows us to isolate the role of competition intensity on

contract outcomes. Moreover, while existing papers typically focus on a single type of acquisition,

our rich sample containing a wide range of product categories allows us to make a broader

empirical contribution and show how the implications of promoting competition depend on the

relative importance of adaptation costs.

Second, our paper contributes more specifically to a growing literature that evaluates policies

aimed at promoting (or restricting) bidders’ participation in procurement auctions. This literature

emphasizes that expanding the pool of potential bidders may not necessarily translate into lower

award prices if bidders’ participation is endogenous, as their equilibrium bidding behavior may

become less aggressive (Athey et al., 2011, 2013; Li and Zheng, 2009, 2012; Krasnokutskaya and

Seim, 2011; Marmer et al., 2013; Bhattacharya et al., 2014; Sweeting and Bhattacharya, 2015).4

We leverage variation in the number of potential bidders that stems from exogenous changes in

publicity requirements. We model entry and bidding decisions and find that incumbents are indeed

less likely to participate when they anticipate fiercer competition. However, in our setting, the

effect of competition from new entrants dominates that of less aggressive bidding by incumbents,

reducing the winning bid as a result. The source of variation in the number of potential bidders is

closely related to Coviello and Mariniello (2014), who study a similar policy in Italy.

4These ideas were initially introduced by Samuelson (1985) and Levin and Smith (1994). Li and Zheng (2009) provide
an empirical framework highlighting that increasing the number of potential bidders within the independent private
values (IPV) setting has ambiguous effects, since two counteracting effects occur in equilibrium: a “competition effect”
and an “entry effect.” The former tends to reduce prices, while the latter tends to increase them.
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Third, this paper contributes to the growing literature that examines buyers’ role as agents

affecting market outcomes in procurement. This line of work highlights that buyers’ actions can be

motivated by objectives other than simple contract cost reductions (Bandiera et al., 2009; Liebman

and Mahoney, 2017; Coviello and Gagliarducci, 2017; Best et al., 2017; Decarolis et al., 2020; Carril,

2022; Szucs, 2020). Our work is related to Kang and Miller (2021), who use IT procurement contracts

in the United States to estimate a principal-agent model, where the buyer exerts costly effort to

determine the degree of competition contracts receive. Our paper is also concerned with modelling

how the level of competition is endogenously determined, but does not impose structure over a

specific type of friction. Instead, it focuses on recovering preferences over the expected outcomes

that drive buyers’ choices.

The rest of the paper is organized as follows. Section 2 provides background on the U.S. DOD

procurement system and the data we use for our analysis. In Section 3, we provide evidence on the

effects of contract publicity on a range of relevant outcomes. In Section 4, we develop and estimate

an equilibrium model of procurement competition, which we then use to study outcomes under

counterfactual environments in Section 5. Section 6 concludes.

2 Setting and Data

2.1 US Federal Procurement and Publicizing Requirements

Public procurement is a large component of the US economy. In fiscal year 2019, federal contract

awards totaled $926 billion. Contracts are awarded at highly decentralized levels, with more

than 3,000 different contracting offices that are part of an executive or independent agency.5 The

workforce in charge of public contracting is made up of over 35,000 contracting officers whose

primary role is to plan, carry out, and follow up on purchases made by their units. Contracting

officers’ scope of action is defined and limited by the Federal Acquisition Regulation (FAR). The

FAR lays out policy goals and guiding principles, as well as a uniform set of detailed policies

and procedures to guide the procurement process. Our analysis leverages a specific section of the

FAR—Part 5 (Publicizing Contract Actions)—as a convenient source of quasi-experimental variation

to study the effect of information diffusion.

FAR Part 5 requires publicizing contract opportunities to “increase competition”, “broaden

industry participation”, and “assist small businesses [and other minority businesses] (...) in

obtaining contracts”. Since October 1, 2001, contract actions that exceed $25,000 must be publicized

on an online government-wide platform which we will refer to as FedBizOpps (or FBO).6 This

5Executive agencies are headed by a Cabinet secretary, like the Department of Defense, the Department of State, or
the Department of Health and Human Services. Independent agencies, which are not part of the Cabinet, include the
Central Intelligence Agency, the Environmental Protection Agency, and the Federal Trade Commission.

6Throughout our period of analysis, this online platform—designated as the “government point of entry” by the
FAR—was called Federal Business Opportunities (FBO) available at fedbizopps.gov. In late 2019 (after our sample
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implies uploading a request for quotes with a full description of the good or service being

requested, and the instructions to submit the bids. We will refer to this synopsis document as a

contract solicitation. Figure A2, in the Appendix, exhibits an example of FedBizOpps’s interface.

Officers with contracts that are not expected to exceed this threshold are not required to

publicize in FedBizOpps; however, they are still free to use it if they want to increase contract

visibility.7 The regulation also allows for exemptions to the requirement above the threshold, if

doing so “compromises national security”, if “the nature of the file does not make it cost-effective

or practicable”, or if “it is not in the government’s interest”. Therefore, while this policy discretely

affects the likelihood of publicizing contracts around the threshold, compliance may be far from

perfect given the voluntary nature of the rule below this value and the availability of exceptions

above. Appendix C.1 presents additional details of the policy and the website.

The overwhelming majority of the contracts analyzed in this paper are allocated through so-

called simplified acquisition procedures, with vendors being selected according to the lowest price

quote that is technically acceptable given the specifications.8 This simple lowest-bid mechanism is

in contrast with more sophisticated awarding procedures that are available for larger acquisitions,

and which may consider attributes of the offer other than price. For example, the collection and use

of past performance information from the Contractor Performance Assessment Reporting System

(CPARS) are mandated for contracts with award values that largely exceed those considered in our

analysis.9

2.2 Data

We use two complementary sources of data.The first consists of the historical files from FedBizOpps,

which provide detailed information on pre-award notices (i.e. solicitations) posted on the platform.

The second is the Federal Procurement Data System - Next Generation (FPDS-NG), which

tracks federal contracts from the time of their award and includes all follow-on actions, such

as modifications, terminations, renewals, or exercises of options.

We merge awards from FPDS-NG to notices on FedBizOpps using the solicitation number. Note,

however, that while FPDS-NG contains the universe of federal awards, FedBizOpps only has the

period ends), the government point of entry migrated to beta.sam.gov, featuring minor changes to the user interface.
7Procurement officers with contracts with expected values below the threshold are only required to advertise the

solicitation “by displaying [it] in a public place.” This includes, for example, a physical bulletin board located at the
contracting office.

8We conducted several interviews with contracting officers who confirmed that contract awards in this dollar range are
virtually always awarded to the lowest quote, and that there is little discretion to deem a particular offer as not acceptable.
The most common reasons are a blatant omission of the solicitation specifications or the fact that the contractor is barred
from conducting business with the government based on past experience.

9For the DOD as of May 2021, the thresholds are $5,000,000 for Systems and Operations Support, $1,000,000 for
Services and Information Technology, $750,000 for Construction, and $500,000 for Ship Repair and Overhaul. The only
exception is Architect-Engineer contracts, with a threshold of $35,000, but these acquisitions represent less than 0.1% of
our main analysis sample.
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notices posted on the website. From this matching process, we construct a dummy variable that is

equal to 1 if we are able to merge a contract with any pre-award notice on FedBizOpps, in which case

we say the contract was publicized. Appendix C.2 provides additional details on the construction

of the data set. Figure A1 describes the typical timeline of events surrounding the life-cycle of a

contract and the appropriate data source that records that information.

In addition, we observe detailed information for each contract award, including the dollar value

of the funds obligated, a four-digit code describing the product or service, codes for the agency,

sub-agency, and contracting office making the purchase, the identity of the private vendor, the

type of contract pricing, the extent of competition in the award, characteristics of the solicitation

procedure, the number of offers received, and the applicability of a variety of laws and statutes.

Furthermore, we observe the reason and the content of all contract modifications after the contract is

awarded. These actions often involve extending the duration and/or increasing the dollar amount

allocated to the vendor.

We use these modifications to compute two measures of contract execution performance that

are commonly used in the literature: cost overruns and delays (e.g. Decarolis, 2014; Kang and

Miller, 2021; Decarolis et al., 2020; Carril, 2022). Because the data contain the total sum of payments

and completion date expected at the time of the award, we can construct measures of cost overruns

and delays by comparing these expectations to the realized payments and duration.10 A few

considerations suggest that these are meaningful measures of performance. First, both overruns

and delays are routinely collected for larger contracts and used to evaluate the execution of

contractors.11 Furthermore, our interviews with contracting officers confirmed that staying on

budget and on time is an important priority for the buyer. Finally, Carril (2022) shows that these

execution measures are positively correlated with contract quality assessments based on objective

product and service characteristics, using data from a sample of large IT contracts for which quality

is systematically measured (Liebman and Mahoney, 2017).12

The analysis sample consists of all competitively awarded definitive contracts13 with award

values between $ 10,000 and $ 40,000, awarded in fiscal years 2015 through 2019 by the Department

10The FPDS data records whether the modifications are in or out of contract scope. Our analysis does not restrict to a
specific type of renegotiation, although out-of-scope modifications are extremely uncommon in our sample.

11For example, the IT dashboard—which tracks the performance of large IT projects—scores projects based on a series
of considerations, two of which are deviations with respect to budgeted cost and scheduled delivery. Similarly, the DoD
is required to periodically report to Congress on the cost and schedule status of all Major Defense Acquisition Programs.

12For a sample of FPDS contracts merged to IT projects in the IT dashboard, Carril (2022) shows that overruns and delays
as computed here correlate positively and significantly with officers’ evaluations, which need to be based on objective
performance metrics such as, e.g., “percent of the time that the system is available”, “percent of servers reduced as a
result of virtualization”, “number of repeat customers using system”, etc.

13Federal contracts can be broadly categorized into two types: definitive contracts (DCs) and indefinite delivery
vehicles (IDVs). DCs are stand-alone, one-time agreements with a single vendor for the purchase of goods or services
under specified terms and conditions. See Carril (2022) for more details. We simplify the analysis by focusing exclusively
on DCs, which are well-defined requirements involving a bilateral relationship between a single government unit and a
private firm.
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of Defense (DOD), for products and services other than Research and Development (R&D).14

Appendix Table B.1 presents summary statistics of the sample. In total, there are roughly 86,000

contracts awarded to almost 30,000 firms. These contracts are required by 597 contracting offices

belonging to the Army, the Navy, or the Air Force. The expected contract duration is 54 days on

average and all contracts are awarded on a fixed-price basis. A noteworthy feature of this setting is

that competition is limited: an average contract receives 3.5 offers, with one out of four contracts

receiving a single offer.15 Winning vendors are often geographically close to the contracting

offices, with both located in the same state in 2 out of every 3 contracts, and 75% of suppliers

are characterized as small businesses. One out of every four contracts experiences modifications

during the execution stage, leading to 7.6% of average cost overruns (i.e., excess cost relative to the

original award value).

We also observe rich information about the type of good and service that is contracted upon.

Each award is classified into one of 1,479 possible standardized 4-digit alphanumeric codes. These

can be aggregated into 101 broader 2-digit product categories, 77 goods, and 24 services. Table B.2

shows the top 10 most common 2-digit good and service categories. The most common product

categories are ADP Equipment Software, Medical Equipment and Supplies, and Maintenance and

Repair Equipment.

3 The Effect of Competition on Contract Outcomes

In this section, we study the effects of publicizing procurement solicitations on contract outcomes.

As described in Section 2.1, federal regulation introduces a publicity requirement at $25,000. We

exploit this discontinuity to provide evidence of the effects of publicity on contract award price and

other contract outcomes. These results will serve as the basis for the development of our model in

Section 4.

3.1 Preliminaries

For each contract in our data, we observe agencies’ decisions to publicly solicit a contract in

FedBizzOpps.gov prior to its award (a decision that we denote as D ∈ {0, 1}). We leverage the

variation introduced by the regulation, which discontinuously affects the likelihood of public

solicitation at an arbitrary threshold ( p̄ = 25, 000) depending on the contract’s expected award

price ( p̃). We do not observe ex-ante estimated prices p̃, but only ex-post realized prices p, which
14The Department of Defense represents 58% of overall federal spending and more than 60% in the restricted sample.

We exclude R&D awards because are subject to a unique set of acquisition rules, see FAR Part 35.
15More than half of the awards are set aside for a particular type of firm (typically, small business). Set-asides are

a major factor of acquisition strategy in the DOD and contracting offices are required to meet specific set-aside goals.
Even though they affect contract competition, we abstract away from that feature as we do not condition nor restrict our
sample based on that margin. Importantly, set-aside requirements do not vary within the range of contract values that
we study.
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entails two empirical challenges. First, contracting officers know the policy threshold, so it may

generate incentives to modify the purchase in a way that makes the ex-ante estimate fall below p̄.

This behavior would result in bunching on the distribution of ex-ante prices, generating an excess

amount of contracts estimated to be at or slightly below p̃ = p̄. Second, since prices ex-post may

differ from prices ex-ante, estimating effects at the discontinuity may be subject to measurement

error biases. In our case, publicity may affect prices due to enhanced competition; thus, the error

distribution may differ depending on the publicity status of the contract.

To tackle these empirical challenges, we propose a method that uses the distribution of

observed awards p and publicizing decisions D to (nonparametrically) recover information

about the distribution of p̃, the distribution of the effects of publicity on price, and the extent

of “manipulation”.16 Intuitively, the method hinges on comparing the observed empirical

distributions of award prices with estimated counterfactual distributions stripped of the confounding

influence of bunching and competitive price effects. We use this framework to estimate price effects

and correct (and bound) RDD estimates on non-price outcomes accounting for the aforementioned

confounds. Since these corrections ultimately have a modest effect on our final results, we leave

most details about the method to Appendix D.17 Furthermore, in Carril and Gonzalez-Lira (2021),

we extend the insights developed here and propose a method to correct for more general sources

of measurement error in RDDs.

Section 3.2 discusses the price effects of publicity that are obtained from the density analysis

approach. Section 3.3 describes the estimation of publicity effects on non-price outcomes relying on

corrected RDD methods. Sections 3.4, 3.5 and 3.6 provide interpretation of the estimated effects.

3.2 Analysis of Contract Price Distributions

Let pt( p̃t|Dt) be the potential log-price that we would have observed for contract t, as a function of

ex-ante estimates p̃t and a publicity decision of Dt ∈ {0, 1}. We assume that publicizing solicitations

leads to a (log-)linear random price effect for contract t: i.e., pt( p̃t|Dt = 1) = p̃t − γt, with γt ∼
Fγ(·).

We estimate E [γt] from the observed distributions of publicized and non-publicized contracts.

The intuition of our method is based on three observations. First, relative to a counterfactual

with no price effects of publicity (i.e., γt = 0 for all t), the observed distribution of publicized

contracts should be shifted horizontally by E [γt]. Second, by definition, the distribution of

non-publicized contracts is not affected by publicity effects γt. Third, we expect the counterfactual
16By manipulation we mean any decision ex-ante that modifies the requirement with the sole purpose of arriving at a

different price estimate. The term follows the literature on Regression Discontinuity, which refers to this as manipulation
of the running variable. However, it is noteworthy that this behavior need not involve any wrongdoing.

17The key intuition for why these corrections are unimportant in our case can be better understood using a standard
“donut-RD” logic: since both sources of measurement error would be most pronounced right around the discontinuity
cutoff, then RDD estimates should be sensitive to the exclusion of small subsets of observations around the threshold. In
contrast, below we show that baseline estimates are quite robust to the exclusion of windows around $25,000.
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Figure 1: Distribution of Price Effects
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the estimated mean effect. Panel (b) shows the CDF of price effects separating contracts for goods and services. Panel (c)
shows the CDF of price effects by quartile of complexity.

price distribution of the total number of contracts (the sum of those with and without publicity) to

be smooth around the discontinuity, even though the threshold regulation generates discontinuities

on each conditional distribution. These three observations motivate our method. We pick a value

for Ê [γt] and “undo” the price effects of publicity by shifting the distribution of publicized

contracts, which we then add to the non-publicized contracts. The “right” value of Ê [γt] will

satisfy smoothness of the overall distribution and an integration constraint.

Appendix D shows how this logic can be extended to nonparametrically identify the full CDF

of price effects γt given the observed distributions of realized prices conditional on publicity

status, f (pt|Dt = 0) and f (pt|Dt = 1). Moreover, the analysis is robust to having strategic

bunching in the distribution of non-publicized awards, and the extent of this behavior is also

identified using similar arguments. The key is that strategic bunching affects only the distribution

of non-publicized awards, so that price effects and bunching are separately identified from the two

observed distributions.

Figure 1(a) depicts the (nonparametric) estimate of the CDF of γt, along with a local polynomial

smoothing. We find that publicity leads to an average reduction in award price of 0.06 log-points

(SE: 0.02), equivalent to $ 1,456 at the discontinuity. From the full distribution, we see that

publicizing contract opportunities reduces award prices for 83% of the contracts. Table B.3 in

the Appendix provides more details about the mean and variance of price effects and displays

sub-group analyses. We find that price effects are higher for services, and the effects are larger for

more complex contracts.18

Figure A4 shows the density distributions of both publicized and non-publicized contracts,

stripped down from price effects and strategic bunching responses. From the distribution of non-

publicized awards (Panel (a)), we can directly compute the excess bunching below the threshold,

18By complexity, we refer to the average cost-overrun for all contracts in the product category valued under $20,000.
This is discussed later in the paper.
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explained by agencies’ desire to avoid the publicity mandate. We estimate that the excess mass right

below the discontinuity equals 12% of the value of the density at the threshold. This magnitude

will be used to account for the effects of this manipulation on our RDD estimates in Section 3.3.

However, we can already infer that, since the extent of bunching is arguably modest, its impact on

our estimates will be limited as well.

Finally, in Panel (b), we compare the empirical distribution to the sharply discontinuous

distribution of publicized awards that would be observed if γt = 0 for all t. It is evident how the

distribution of γt smooths out the discontinuity in the density of publicized contracts. As noted by

existing literature, observing the assignment variable with error biases the estimated effects toward

zero in the RDD setting (Lee and Lemieux, 2010; Davezies and Le Barbanchon, 2017; Pei and Shen,

2017). We leverage the estimated distribution of γt to correct for this factor in Section 3.3.

3.3 Regression Discontinuity Design: Estimating Effects on Non-price Outcomes

In this section, we leverage the discontinuous nature of the publicity requirements to gauge

the effects of publicity on a set of other relevant outcomes, including the level of competition,

characteristics of the winning bidder, and post-award contractor performance. We use the estimates

of price effects and bunching to adjust the RDD estimates accounting for these factors.

3.3.1 Empirical Framework

Consider specifications of the following form:

Yt = α + τ · Dt + f ( p̃i) + X′tζ + εt , (1)

where the coefficient of interest is τ, the effect of publicizing a solicitation on contract outcome Yt. In

the standard Regression Discontinuity Design (RDD), we obtain an estimate of τ̂IV by instrumenting

Dt with the discontinuity in publicity requirements. The first stage of this IV procedure is of the

form:

Dt = κ + δ · 1[ p̃t > p̄] + h( p̃t) + X′tη + νt , (2)

for some smooth function h(·). A key advantage of this approach is that it is possible to provide

compelling evidence on the existence of an effect by graphically showing the reduced form of this

model, i.e.:

Yt = µ + φ · 1[ p̃t > p̄] + g( p̃t) + X′tψ + ξt . (3)

Consider first a naive RDD, described by versions of Equation (1), Equation (2), and

Equation (3), where we simply replace ex-ante prices p̃t by realized observed prices pt. The

estimates obtained from this analysis will be identical to the true RDD if there are neither price
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effects (γt = 0 for all t) nor bunching responses. The larger these effects are, the more the estimates

from the naive RDD will differ from the true parameters. Given this, we take the naive RDD as

our baseline and sequentially implement corrections to account for price effects and bunching

responses, to transparently show how these elements affect the estimation.

In Appendix D.1.6, we describe in detail the first of such corrections, namely a method to recover

the causal parameters of interest in the presence of price effects γt. The key result is that, under

our modelling assumptions, we can write the conditional expectation of contract outcomes given

observed prices E [Yt|pt] as an explicit linear function of the causal parameters that we seek to recover,

plus objects that we can directly observe or estimate. This function depends on observed prices pt,

observed treatment probabilities πD, and moments of the distributions of price effects Fγ (which we

obtained from the density analysis). We then use this result to estimate the causal parameters using

OLS.19

On the other hand, we can account for the effect of bunching responses by following the results

from Gerard, Rokkanen, and Rothe (2020). These authors derive sharp bounds on treatment effects

for the RDD in the presence of bunching. The simple argument is that, if one can estimate the

extent of “manipulation in the running variable”, which in our case corresponds to the excess mass

below the threshold among untreated units (non-publicized contracts), then one can derive bounds

on treatment effects by assuming that these units are the ones with either the highest or the lowest

values of the outcome variable Yt. Intuitively, these are computed under the “worst” and “best” case

scenarios in terms of how selection can influence RDD estimates. In Appendix D.1.8, we explain in

detail how to derive these bounds in our setting, and how to calculate them using our estimate of

excess bunching obtained in our density analysis.

3.3.2 Effects on Non-Price Outcomes

Baseline RDD Results. We start with our baseline results—which ignore the possible influence

of price effects or bunching—, and then sequentially apply corrections to account for the specific

issues present in our setting. We estimate Equation (1), Equation (2), and Equation (3), assuming

that p̃t = pt. In our baseline specifications, we use a simple linear fit for g(·) and no controls Xt, but

also present results from the robust local polynomial approach proposed by Calonico, Cattaneo, and

Titiunik (2014). We present these RDD results visually, by plotting binned scatters of Equation (2)

and Equation (3). In the next section, we explicitly assess how these baseline estimates change as

we consider the impact of price effects and (or) bunching responses.20

19We also show in Appendix D.1.6 that this logic can be easily extended to accommodate measurement error in ex-ante
prices, so that p̃ is only an unbiased but not necessarily perfect forecast of p0( p̃).

20Appendix Figure A5 presents RDD plots for baseline variables. We find that baseline contract design characteristics
are balanced around the threshold, with the exception of goods vs. services. There are more services right above the
threshold. The difference is noisy and against possible selection patterns. All of our baseline estimates are robust to the
inclusion of a service dummy as a control.
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Figure 2: Publicizing Requirement and Intensity of Competition
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Notes: Panel (a) and Panel (b) respectively show the fraction of contracts posted on FedBizOpps and the number of offers received,
as a function of award amounts. Blue dots represent average outcomes by bins of award amounts. Colored dashed lines represent
linear and quadratic fits at each side of the $25,000 threshold. The data sources are FBO.gov and the Federal Procurement Data
System-Next Generation. The sample consists of competitive, non-R&D, definitive contracts and purchase orders, with award
values between $ 10,000 and $ 40,000, awarded by the Department of Defense in fiscal years 2015 through 2019. Award amounts
are discretized into right-inclusive bins of $3,000 dollars length.

The results for the first stage Equation (2) are presented graphically in Figure 2(a). We see that

the use of FedBizOpps jumps sharply past the $25,000 threshold of award amounts. The share of

contracts that are publicly solicited in the government platform increases from roughly 30% at or

slightly below $25,000, to 50% right above this threshold.

The reduced form specifications (Equation (3)) are estimated on three sets of outcomes:

the intensity of competition, winning vendor characteristics (including its relationship with

the awarding office), and post-award performance. Most of the existing literature has studied

these variables independently.21 By studying them jointly, we can generate a comprehensive

understanding of the mechanisms and implications of policies oriented to enhance competition.

Figure 2(b) shows how posting solicitations on FedBizOpps impacts the number of offers that a

contract receives around the threshold. Contracts right above $25,000 (which are more likely to be

publicly solicited), receive roughly 0.4 more bids. The magnitude of the increase in the number of

offers is considerable given that the policy only changes the likelihood of a publicized solicitation

by around 20 p.p.

These results indicate that encouraging the public posting of solicitations leads to the stated

goal of increasing competition by attracting additional bids. However, it does not necessarily

imply that these new offers affect the equilibrium allocation of the contract, since new marginal

bidders may not be competitive. Figure 3 shows that this is not the case. In Panel (a), we see that

publicized contracts are awarded to vendors that are relatively larger, as measured by a reduction

21See, for example, Athey (2001); Li and Zheng (2009) (competition), Macleod and Malcomson (1989); Bajari et al.
(2009); Malcomson (2012) (relations), and Bajari et al. (2014); Decarolis et al. (2020); Ryan (2020) (ex-post renegotiation
and performance).
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Figure 3: Publicity and the Characteristics of the Winning Firm

(a) Contractor is a Small Business
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Notes: Panel (a), Panel (b) and Panel (c) respectively show the fraction of awarded contractors that are small businesses, the
fraction of awarded contractors that are foreign, and the natural logarithm of the distance (in miles) between the contracting
office’s location and the contractor location, as a function of award amounts. Blue dots represent average outcomes by bins of
award amounts. Colored dashed lines represent linear and quadratic fits at each side of the $25,000 threshold. The data sources are
FBO.gov and the Federal Procurement Data System-Next Generation. The sample consists of competitive, non-R&D, definitive
contracts and purchase orders, with award values between $ 10,000 and $ 40,000, awarded by the Department of Defense in fiscal
years 2015 through 2019. Award amounts are discretized into right-inclusive bins of $3,000 dollars length.

of the probability of awarding the contract to a small firm.22 This “penalty” for small businesses is

interesting because it goes against the stated goals of the publicity regulation (FAR Part 5). Panel (b)

and Panel (c) show that publicized contracts are more likely to be awarded to foreign firms or firms

that are geographically more distant from the contracting office location. These results suggest that

marginal entrants attracted by the public solicitation do win awards with a positive probability.

To measure the impact on post-award contract performance, we use two measures that are

commonly used in the literature: cost overruns and delays. We compute these as the difference

between the ex-post realized sum of payments and duration of the project, and the expected

value of these variables at the time of the award. Figure 4 presents the results. We find that the

share of contracts with overruns and the share of contracts with delays increase by 2 p.p. and 1.5

p.p., respectively. These differences are statistically and economically significant considering the

magnitude of the first stage. These results show that the execution of publicized contracts tends

to result in poorer performance outcomes, including ex-post costs. Figure A6 in the Appendix

shows effects on additional performance-related variables; the number of post-award contract

modifications, cost-overrun dollars as a share of the original award; and days of delay relative

to the expected schedule. These results align with the findings presented in Figure 4: publicized

contracts experience more problems during the execution stage. Appendix Figures A13 through

A19 illustrate how these effects vary by agency and type of product requested.

22The Small Business Administration (SBA) defines size standards by NAICS Industry. These standards depend on the
number of employees and/or annual revenue. As a reference, the revenue standard for building cleaning services (NAICS
code 561720 ), a common category in the sample, is $ 19.5 million per year.
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Figure 4: Publicity and Post-award Contract Performance

(a) Share of Contracts Experiencing Cost-overruns
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Notes: Panel (a) and Panel (b) respectively show the fraction of contracts experiencing cost-overruns and the fraction of contracts
experiencing delays, as a function of award amounts. Cost-overruns are measured as the difference between total obligated
dollars and obligated dollars at the time of the award. Delays are measured as the difference between total duration of the
contract and expected duration at the time of the award. Blue dots represent average outcomes by bins of award amounts.
Colored dashed lines represent linear and quadratic fits at each side of the $25,000 threshold. The data sources are FBO.gov and
the Federal Procurement Data System-Next Generation. The sample consists of competitive, non-R&D, definitive contracts and
purchase orders, with award values between $ 10,000 and $ 40,000, awarded by the Department of Defense in fiscal years 2015
through 2019. Award amounts are discretized into right-inclusive bins of $3,000 dollars length.

Adjusted RDD Results. In this section, we present a series of refinements to our baseline RDD

results. First, we explore the robustness of our baseline linear specification with the estimator

proposed by Calonico, Cattaneo, and Titiunik (2014), which uses robust local polynomial fits.

Second, building upon the results of our density analysis in Section 3.2 and further explained in

Appendix D and Carril and Gonzalez-Lira (2021), we adjust the baseline RDD estimates to account

for the observed running variable (award price) being subject to both treatment effects (price effects

of publicity) and potential manipulation (bunching).

Table 1 presents reduced-form estimates for each relevant outcome variable. The first column

shows the coefficient of our naive linear RDD using ordinary least squares (OLS). These results

replicate the RDD plots discussed earlier. Column (2) presents Calonico et al. (2014)’s local

polynomial estimates with robust bias-corrected standard errors. Overall, non-linear estimates

are similar in magnitude and significance to simple OLS estimates. The third column presents

estimates that account for price effects in the treatment group (i.e. publicized contracts), following

the method explained in Appendix D.1.6. The correction for price effects is relatively modest,

and in most cases tends to amplify the baseline results. This is consistent with the fact that the

price effects smooth out the discontinuity for the treatment group: under naive estimation, some

publicized contracts are observed below the threshold when their original (ex-ante) price was

above it.

The next two columns present partial identification estimates that account for bunching
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Table 1: Reduced-form RDD Estimates and Corrections

Dependent Variable
OLS CCT

Price Effect Manipulation Price Effect +
Adjustment Bounds Manip. Bounds

(1) (2) (3) (4) (5)

Number of offers 0.3569 0.5447
0.3526 [ 0.2762 , 0.5344 ] [ 0.3073 , 0.4506 ]

(0.0677) (0.1053)

One offer -0.0191 -0.0235
-0.0204 [ -0.0273 , 0.0051 ] [ -0.0249 , -0.0071 ]

(0.0064) (0.0108)

Log distance firm-office 0.1392 0.1199
0.1909 [ 0.0290 , 0.2688 ] [ 0.1303 , 0.2619 ]

(0.0481) (0.0817)

Foreign firm 0.0357 0.0508
0.0375 [ 0.0328 , 0.0519 ] [ 0.0358 , 0.0465 ]

(0.0045) (0.0078)

New firm 0.0175 0.0185
0.0247 [ 0.0022 , 0.0350 ] [ 0.0164 , 0.0344 ]

(0.0075) (0.0126)

Small business -0.0277 -0.0295
-0.0265 [ -0.0523 , -0.0195 ] [ -0.0399 , -0.0219 ]

(0.0065) (0.0110)

Any cost-overrun 0.0135 0.0246
0.0144 [ 0.0103 , 0.0262 ] [ 0.0127 , 0.0216 ]

(0.0045) (0.0077)

Cost-overruns (relative dollars) 0.0095 0.0161
0.0127 [ 0.0053 , 0.0179 ] [ 0.0103 , 0.0174 ]

(0.0058) (0.0100)

Any delay 0.0130 0.0151
0.0143 [ 0.0094 , 0.0270 ] [ 0.0123 , 0.0222 ]

(0.0047) (0.0080)

Delays (days) 2.3262 4.0361
2.7491 [ 1.2300 , 5.3639 ] [ 2.1504 , 4.4703 ]

(2.0388) (3.4935)

Number of modifications 0.0375 0.0619
0.0395 [ 0.0204 , 0.0926 ] [ 0.0300 , 0.0701 ]

(0.0173) (0.0300)

Notes: This table shows Regression Discontinuity Design (RDD) estimates of the reduced-form relationship between a
series of outcome variables and an indicator of whether a contract award price exceeds $25,000. Each estimate comes from
a separate regression. Coefficients in column (1) use a linear fit above and below the discontinuity. Coefficients in column
(2) correspond to the robust local polynomial method proposed by Calonico, Cattaneo, and Titiunik (2014). Column (3)
applies a correction to the estimates in column (1), accounting for the existence of price-effects, following the method
proposed in Appendix D.1.6. Column (4) shows bounds on the reduced-form coefficient in column (1), accounting for
the possibility of “running variable manipulation” (i.e. bunching), following the method proposed in Appendix D.1.8.
Column (5) shows bounds on the adjusted reduced-form coefficient in column (4), accounting for both the existence of
price-effects and the possibility of “running variable manipulation” (i.e. bunching). Standard errors for the coefficients in
columns (1) and (2) are shown in parentheses.
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responses. Column (4) shows lower and upper bounds without accounting for price effects, while

the fifth column shows bounds that do adjust for price effects. Notably, since the magnitude of

bunching is modest in our context, the bounds presented are relatively narrow, which tells us

that bunching does not pose a serious threat to the interpretation of our results. Interestingly, the

lower bounds in Column (5) tend to be very close to our baseline estimates. This implies that the

downward bias introduced by price effects on the naive estimates of Column (1) is of a similar

magnitude than the worst-case upward bias introduced by bunching responses.

Taken together, these results imply that the strong visual evidence presented in Figures 2(a)

through 4 is robust to fully account for the potentially confounding influence of price effects and

strategic bunching by the buyer. Intuitively, the reason is that our estimates are not overly reliant

on data very close to the discontinuity. As it is visually apparent from the figures and corroborated

in Table 1, simple linear estimates that rely on a wider window of data are not too different from

estimates that give a higher weight to the data very near the cutoff. This is important because the

potential influence of price effects and strategic bunching would affect most strongly this area of

the distribution. Hence, if these confounds were empirically relevant, the RDD estimates would

be highly sensitive to excluding data points very close to $25,000. In contrast, Appendix Table B.4

implements a series of “donut-RD” specifications (Barreca et al., 2011; Cattaneo and Titiunik, 2022),

and shows that our baseline linear estimates are robust to the exclusion of a window of varying

width around the cutoff: for all window sizes, coefficients are statistically indistinguishable from

the baseline.

3.4 The Role of Contract Complexity

Prior literature on incomplete contracts in procurement has emphasized the link between the

underlying complexity of a transaction—an exogenous characteristic of the product being

procured—and the level of costly ex-post adaptation (Bajari and Tadelis, 2001; Bajari, McMillan,

and Tadelis, 2009; Bajari, Houghton, and Tadelis, 2014). Since the difficulty of specifying several

possible contingencies varies across contracts, we should observe less variability in post-award

performance if the purchase involves, e.g., a standardized product rather than an ad-hoc service.

This may explain why some product categories in our data rarely experience execution issues

ex-post, while others present post-award modifications for most contracts. It may also imply that

the effects on post-award performance that we documented above are heterogeneous across goods

or services with different underlying complexity. Similarly, the effects of expanding competition

on award prices are also likely to vary with complexity. For example, if bidders of relatively

complex products are more heterogeneous in production costs, additional offers would lower

contract award prices more than when contractors are homogeneous. Thus, the degree of contract

complexity may shape how competition affects both prices ex-ante and performance ex-post.

To assess these mechanisms more directly, we leverage rich heterogeneity in our data,
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which features 1,918 distinct product categories. Using this information, we proxy the degree

of complexity at the product category level based on the baseline level of execution performance.

In particular, we define a category’s degree of complexity as the average cost-overruns experienced

by all contracts in that category with an award below $20,000.23 This leads to an intuitive

classification, as shown in Appendix Table B.5, which lists the complexity measure associated

with the top and bottom product categories. Contracts for easy-to-specify purchases—like fuel,

lumber, or medical supplies—receive the lowest complexity score. In contrast, contracts for more

customized needs—e.g., medical services, facility operation, and housekeeping—are associated

with higher degrees of complexity.

We divide the contracts in our sample into quartiles of complexity, and re-estimate both price

effects and RDDs on performance, separately for each of the four groups.24 Appendix Table B.3

shows estimates for the mean and standard deviation of price effects γt, separately for the full

sample (column 1), goods versus services (columns 2 and 3), and each of the four quartiles of

complexity (columns 4 through 7). Similarly, Figure 1 shows the CDFs of price effects for each

of these groups. Although estimates become noisier as we divide the sample, we see suggestive

evidence that large price effects are more concentrated among the most complex contracts. Our

point estimates indicate that, on average, publicity reduces the prices of goods by 5% and services

by 7.8%. This effect corresponds to 4% for the least complex quartile, versus 9.6% for the top quartile

of complexity.

The results are qualitatively similar for the impact of publicity on post-award performance.

Figure 5 shows that the increase in overruns and delays that we reported in Figure 4 is driven by

goods and services in the top quartile of complexity. We are unable to reject the null for the lower

three quartiles.25 Overall, it is noteworthy that both counteracting effects of competition—price

reductions ex-ante and overruns ex-post—are more pronounced for complex contracts. In section

4, we zoom in on the drivers of these effects.

3.5 Evidence of Adverse Selection

Our results show that increasing the pool of bidders through publicity generates changes to contract

prices and subsequent contract execution. Overall, there are two classes of explanations through

which we can rationalize the connection between publicity and contract performance: moral

23There are multiple ways of characterizing product complexity. We implemented different approaches, including
using the standard deviation in performance, indexing multiple performance variables, and counting the number of
words in the solicitation’s description. These classifications lead to roughly the same rank of product categories, and thus
varying the definition does not threaten the general results. We present correlations between some of these measures in
Figure A7. We use the mean of cost overruns because it is transparent and easy to interpret. We get around the issue of
classifying contract categories based on an outcome by focusing on awards below $20,000.

24We also consider the more simple heterogeneity of effects between goods and services.
25Appendix Figure A19 shows RD plots for cost-overruns separating for goods and services. Note that cost-overruns

increase for both types of contracts. However, both the baseline level and the magnitude of the jump are substantially
larger for services.
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Figure 5: Effects of Publicity on Post-award Performance by Degree of Complexity

(a) Cost-overruns
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Notes: This figure shows four regression coefficients and their 95% confidence intervals. Each coefficient is an estimate of a
RDD reduced-form coefficient in Equation (3), per sub-group, estimated using (interacted) OLS. The dependent variable in Panel
(a) and Panel (b) are indicators for any positive cost-overruns and delays, respectively. The subgroups are determined by four
quartiles of a proxy of contract complexity. The contract complexity proxy is constructed at the product category level and is
defined as the average cost overruns for contracts with awards below $20,000 in that category. The data source is the Federal
Procurement Data System-Next Generation. The sample consists of non-R&D definitive contracts and purchase orders, with
award values between $ 10,000 and $ 40,000, awarded by the Department of Defense in fiscal years 2015 through 2019.

hazard and adverse selection.26 The first explanation implies that contractors modify their behavior

depending on the publicity status of the contract. This could be rationalized by suppliers behaving

differently depending on the buyer. For example, if a vendor receives contract information

directly from the buyer, she could decide to absorb potential overruns to make sure she gets

direct information again in the future. The second explanation implies that publicity allows the

participation of suppliers that are “different,” and that their performance ability is unrelated to the

identity of the buyer or contract’s advertising.

To elucidate between these mechanisms, we leverage the fact that buyers often require the same

product categories repeatedly over time, allowing us to observe multiple contracts for the same

buyer-product combination, with variation in the size of the award and other characteristics of the

contract. Moreover, on the supplier’s side, we observe most contractors executing more than one

contract, for one or more different buyers. This variation allows us to test how much of the observed

variation is due to contractors’ “types,” relative to variation “within” contractor.

Table 2 presents the results of this exercise, where we re-estimate RDD specifications including

contractor fixed-effects. Columns 1 and 3 show the baseline IV estimates of the changes in

performance induced by publicity, showing that the share of contracts experiencing overruns

and delays jumps by 7.6 and 5.0 percentage points, respectively. Columns 2 and 4 show that

incorporating contractor fixed-effects shrinks the absolute value of the estimates substantially (to

26Again, note that publicizing contracts in FBO.gov impacts neither the contract’s design nor the selection mechanism.
Being posted on FedBizOpps.gov solely affects the diffusion of information.
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2.2 and -1.3 percentage points, respectively) making both of them statistically indistinguishable

from zero. Importantly, while there is no effect of publicity on performance when we look within

contractors, columns 5 and 6 show that the competitive environment is indeed changing when we

cross the threshold: the IV estimate of publicity on the number of offers barely changes with the

introduction of contractor fixed-effects, moving from 2.3 to 2.1 additional offers, both statistically

different from zero and statistically indistinguishable from each other.

Taken together, this evidence implies that most of the effects of publicity on contract

performance is explained by variation across contractors, as opposed to within contractors.

Conditional on the selected firm, performance does not change substantially when we cross

the threshold, even though competition does increase substantially. We interpret these results as

strong evidence in favor of adverse selection (i.e., that publicity brings in different vendors), as

opposed to moral hazard (i.e., that publicity induces the same firms to change their behavior).

Table 2: IV-RD Estimates Controlling for Firm Fixed-Effects

Any Cost Overrun Any Delay Number of Offers

(1) (2) (3) (4) (5) (6)

Estimate 0.076 0.022 0.050 -0.013 2.312 2.091
S. E. (0.027) (0.029) (0.028) (0.032) (0.436) (0.470)

Firm Fixed Effects No Yes No Yes No Yes
Number of Observations 69,296 69,296 69,296 69,296 69,296 69,296

Notes: This table shows instrumental variable estimates of the effect of appearing in FedBizzOpps on contract outcomes using a
regression discontinuity design. The instrument corresponds to a dummy indicating whether the award value exceeds $25,000.
The dependent variable in columns 1 and 2 is an indicator of having any positive cost-overrun. The dependent variable in
columns 3 and 4 is an indicator of having any positive delays. The dependent variable in columns 5 and 6 is the number of
offers received. Columns 2, 4, and 6 include firm fixed effects. Cost overruns are computed as the difference between actual
obligated contract dollars and expected total obligations at the award time. Delays are computed as the difference between the
actual duration of the contract and the expected duration at the award time. The data source is the Federal Procurement Data
System-Next Generation. The full sample consists of non-R&D definitive contracts and purchase orders, with award values
between $ 10,000 and $ 40,000, awarded by the Department of Defense in fiscal years 2015 through 2019.

3.6 Discussion

To summarize, promoting vendor participation through publicity increases contract competition,

as the average number of offers received rises substantially. The added competition translates into

reductions in contract prices, but we also find that publicized contracts result in more cost overruns

and delays. Taken together, our results show that promoting contract competition for contracts that

are (at least partially) incomplete involves a trade-off: it reduces contract award prices at the cost

of exacerbating adverse selection, leading to contractors that are characterized by lower execution

performance. Furthermore, we find that this trade-off is heterogeneous, with both price effects and
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performance effects depending on the degree of contract complexity.

While this policy analysis is informative of the effects of promoting competition on contract

outcomes, it also presents some limitations. First, the estimated effects are local to the policy

threshold of $25,000, so they may not be informative of the impacts for the rest of the sample.

Second, they do not provide a clear representation of the mechanisms by which buyers’ and sellers’

characteristics and behavior shape market outcomes. Finally, our reduced-form analysis does not

allow us to evaluate equilibrium conditions under alternative policy designs. To complement the

previous analysis, we, therefore, develop and estimate an equilibrium model of public procurement

competition.

4 A Model of Competition Promotion, and Firms’ Participation and

Bidding Decisions

We develop and estimate an equilibrium model of publicity selection, firm participation, and

bidding decisions in our public procurement setting. The ultimate goal is to estimate the model’s

primitives and study the implications of policy counterfactuals. We make modeling assumptions

based on the setting’s key features, aiming to transition from a theoretical model to an empirical

one that can be estimated using the data available. Furthermore, we leverage the same variation

highlighted in Section 3–namely, the discontinuous nature of the publicity requirement–, along

with additional variation in market structure, to identify the model’s parameters. Section 4.1

introduces the theoretical model and discusses the auction’s entry and bidding equilibrium

strategies. Section 4.2 describes the empirical implementation of the model, and in Section 4.3 we

discuss identification. The estimation approach is presented in Section 4.4 and results are discussed

in Section 4.5.

4.1 Model

A buyer offers a single and indivisible contract to N potential contractors. Each potential contractor

j must incur an entry cost ωj > 0 to learn her private cost to complete the task cj ∈ [c, c] ⊂ R+ and

bid for the contract. Both ωj and cj are assumed to be independent random draws from specific

distributions. We model the potential bidders’ choices in two stages. First, knowing the number of

potential competitors N, each potential bidder decides whether to incur the entry cost. After the

entry stage, the n ≤ N firms that incurred entry costs learn their costs of completing the project and

submit their bids bj. The awarding mechanism is a first-price sealed-bid auction. The winner of the

auction becomes the contractor and its execution performance, qj, is observed once the contract is

finished.

Our analysis considers asymmetry between potential contractors. In particular, there are two
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types of firms, locals (L) and non-locals (NL). These firms differ in their production technology,

which is characterized by the distribution of entry costs Gk
ω, the distribution of the costs of

completing the project Fk
c , and the distribution of execution performance Hk

q , where k(j) ∈ {L, NL}
denotes group affiliation of bidder j. We assume that project and bid preparation costs are private

information of each firm and are distributed independently across all firms and identically within

group; nonetheless, the distributional asymmetries introduce affiliation of observations across

groups.

The contract publicity status determines the set of potential participants as follows: if the

contract solicitation is openly publicized, both local and non-local contractors learn about the

contract opportunity; conversely, if the contract is not advertised, only local contractors receive the

information. Hence, our model allows the buyer to endogenously determine the set of potential

contractors through the publicity choice, which is made taking into consideration: (i) the likelihood

that a contractor of each group is awarded the contract, (ii) the expected price, and (iii) the expected

execution performance.

Contract Execution: Cost-Overruns. Throughout our analysis, we measure contractors’ performance

by the magnitude of cost overruns, which correspond to ex-post realizations of unbudgeted costs.

This variable is convenient as it can be directly benchmarked against the contract’s awarded

dollar value. Of course, this convenience comes at the cost of abstracting away from other

(context-specific) execution costs.27

We assume that contractors draw qj at the execution stage and fully pass through this cost shock

to the buyer, leaving the utility of the contractor unchanged. Thus, potential differences in execution

performance across contractors are explained by differences in production technologies or types,

rather than by strategic aspects. This modelling choice is supported by the evidence presented in

Section 3.5.

Our model abstracts away from and takes as given the (long-run) decision process of local and

non-local firms choosing technologies that lead to differential execution performance. Since we

take costs and performance distributions as primitives, imposing no restrictions on their support

or joint behavior, the estimated Hk
q , Gk

ω, and Fk
c will reflect the underlying relationships between

these variables. Thus, even though overruns are not explicitly strategic, it does not follow that

performance is unrelated to the game’s strategic decisions (entry and bidding). For example, if

non-locals draw lower entry and production costs (so they participate and win more often) at the

expense of incurring more cost-overruns, we can infer that their underlying production technology

“balances out” costs ex-ante and overruns ex-post, highlighting why ex-ante and ex-post actions

should not be studied in isolation.28

27For example, Lewis and Bajari (2011) study the welfare gains associated with reducing delays in highway
construction.

28In Appendix E, we further discuss the implications and limitations of our modeling assumptions.
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4.1.1 Equilibrium in the Bidding Stage

Our analysis focuses on a group-symmetric equilibrium where bidders of group k follow the

same bidding strategy βk(·), mapping project cost cj, into a bid bj. We assume that cj is drawn

independently from a type-specific continuous distribution Fk
c (·), with density f k

c (·) and common

support [c, c] ⊂ R+. The distributions of entry and production costs, and the number of potential

bidders of each type are common knowledge. Nevertheless, we assume that bidders do not observe

the number of actual competitors of each group nk
t , as in Krishna (2003) and Li and Zheng (2009).

Our setting considers two possible scenarios: with and without publicity. If the contract

solicitation is publicized, then both local and non-local firms can participate. In this case, the

expected utility of bidder j with cost realization cj and group membership k(j) depends on the

number of bidders from each group:

E

[
πj(cj)

]
=
(

bj − cj

)(Nk(j)

∑
l=2

ρ
k(j)
l

(
1− Fk(j)

c

(
β−1

k(j)(bj)
))l−1

)(
N−k(j)

∑
l′=1

ρ
−k(j)
l′

(
1− F−k(j)

c

(
β−1
−k(j)(bj)

))l′
)

where ρ
k(j)
l is the probability that the number of actual bidders is equal to l, and −k(j) denotes the

other group of potential contractors. The optimal bidding requires solving a system of differential

equations corresponding to the first order conditions for both types of bidders, as follows:29

1
bj − cj

= f k(j)
c
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+ f−k(j)
c

(
β−1
−k(j)(bj)

) ∂β−1
−k(j)

∂bj

∑N−k(j)

l′=1 ρ
−k(j)
l′ l′

(
1− F−k(j)

c

(
β−1
−k(j)(bj)
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∑N−k(j)

l′=1 ρ
−k(j)
l′

(
1− F−k(j)

c

(
β−1
−k(j)(bj)

))l′

 (4)

If a contract solicitation is not publicized, only local firms can bid, i.e., the number of potential

non-local contractors is zero. In this case, the bidding problem is symmetric as there is only one

group involved. Local suppliers observe the contracts’ publicity status and hence the number of

potential competitors.

4.1.2 Equilibrium of the Entry Stage

Firms compare the ex-ante expected profit conditional on entry to their entry cost ωj, where ωj

is independently drawn from a type-specific continuous distribution Gk
ω(·) with common support

29As noted by previous research on asymmetric auctions (Lebrun, 1999; Bajari, 2001; Maskin and Riley, 2003a,b), the
Lipschitz conditions are not satisfied in this case. The bidding strategies cannot be solved analytically, but require
numerical methods. Campo, Perrigne, and Vuong (2003) and Brendstrup and Paarsch (2003) discuss non-parametric
identification of cost functions in this setting.
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[ω, ω]. Firms with entry costs below their expected profit decide to incur the entry fee to learn about

their cost of completing the project. The ex-ante (expected) profits from participating are given by:

π̄k(ϕk, ϕ−k) =
∫ c

c

(
∑

nk−1,n−k⊂Nk−1,N−k

πk(c|nk − 1, n−k)Pr
(

nk − 1, n−k|Nk, N−k
))

dFk
c (c) (5)

where ϕk and ϕ−k are the entry probabilities of each group. Because entry decisions are made

simultaneously, the equilibrium condition is characterized by a group-specific entry cost threshold

ω̄k, such that firms whose entry cost is below their group-specific threshold participate.30 Finally,

when the contract is not publicized, only locals can participate, and thus the participation problem

becomes symmetric. Therefore, for a given contract t, the local group’s participation threshold

differs depending on whether the contract was publicized.

4.2 Empirical Model

Based on the equilibrium conditions of the general model, we proceed to describe its implementation

in the empirical setting. A contract solicitation t is characterized by (xt, zt, ut, Nt). The vector xt

corresponds to baseline characteristics of the contract, zt are entry-cost shifters, and ut captures

unobserved project heterogeneity reflecting project attributes not included in the data but that

impact firms’ bidding behavior. In the empirical implementation below, xt includes the product or

service category required, its associated complexity measure, the expected duration of the contract,

and the location of the contract. On the other hand, for zt we use variables related to the timing

of the solicitation and, in particular, whether it was required at the end of the fiscal year.31 Finally,

Nt = (NL
t , NNL

t ) denotes the number of potential contractors of each group.32 The model proceeds

30In equilibrium, the entry probabilities are defined by the system of equations:

ϕL = GL
ω

[
ω̄L(ϕL, ϕNL)

]
ϕNL = GNL

ω

[
ω̄NL(ϕL, ϕNL)

]
Group-specific equilibria exist by Brouwer’s Fixed Point Theorem. We numerically verified uniqueness of the equilibrium
entry probabilities within our estimation routine (Krasnokutskaya, 2011; Roberts, 2013). Espin-Sanchez et al. (2021)
discuss sufficient conditions for equilibrium uniqueness in entry games with private information.

31As documented by Liebman and Mahoney (2017), the volume of contracting activity at the end of the fiscal year is
disproportionally high, which may reduce the attention that any given vendor can devote to each solicitation.

32Identifying the potential number of bidders is not trivial (Athey, Levin, and Seira, 2011; Krasnokutskaya and Seim,
2011; Mackay, 2020). We combine two methodologies. First, using the procedure described in Appendix section G.1, we
classify and count the suppliers that ever won a contract for every buyer-product combination. The second method
considers the maximum number of actual bidders for buyer-product auctions. This method is discussed by Athey,
Levin, and Seira (2011); Roberts (2013). It is rooted in the theoretical idea that if all potential bidders decide whether
to enter simultaneously, with enough observations, the maximum number of observed bidders across observations will
be equal to the total number of potential bidders. The maximum number of bidders of auctions that weren’t publicized
informs about the number of potential local bidders. In contrast, the maximum number of bidders of advertised contracts
approximates the sum of local and non-local potential bidders. Finally, we define the number of potential bidders for every
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in four stages, which are depicted in Figure 6. The stages are:

T = 0: Publicity Decision. The buyer observes (xt, zt, ut, Nt) and decides whether to publicize the

contract, Dt ∈ {0, 1}, in order to maximize expected utility. Contract publicity status

determines the set of potential bidders.

T = 1: Entry Decision. Each firm that learns about the contract opportunity observes (xt, zt, ut, Nt).

They draw individual and private realizations of entry cost, and they simultaneously decide

whether to participate.

T = 2 Bid Decision. Active bidders draw a realization of the production cost and decide the

magnitude of their bid. The contract price equals the lowest bid submitted.

T = 3 Execution Stage. Once the contract is finalized, the performance of the selected contractor is

observed and corresponds to the realization of an execution shock in terms of cost overruns.

Figure 6: Timing of the Model

T = 0 T = 1 T = 2 T = 3

Buyer’s
Publicity
Decision

Dt = 0

Dt = 1

N0
t = NL

t

N1
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t + NNL
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Firm’s
Entry Decision

entry cost: ωjt

n0
t = nL0

t

n1
t = nL1

t + nNL1

t

Firm’s
Bid Decision

production cost: cjt

b0(cjt)

b0(cjt) P0
t

P1
t

execution shock: qjt

Q0
t

Q1
t

4.2.1 Specification

Publicity Decision. We assume that the buyer is risk-neutral, forms unbiased beliefs, and derives

utility from expected contract outcomes log-linearly:

UD
t = U(P̄D

t , Q̄D
t , L̄D

t )

= λPP̄D
t + λQQ̄D

t + λL L̄D
t + εD

t ,

where P̄D
t , Q̄D

t and L̄D
t are, respectively, the expectation of the log awarding price, log cost overruns,

and likelihood that a local contractor wins. These expected outcomes are objects that depend on

buyer-product as the maximum of both approaches. Combining these two methods alleviates the potential weaknesses
of each of them. The median number of potential local and non-local bidders is six and three, respectively.
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realizations of (xt, zt, ut, Nt) and the publicity status Dt ∈ {0, 1}. The terms P̄D
t and Q̄D

t are in log-

dollar units, while L̄D
t is a probability. The parameters λP and λQ capture standard price sensitivity.

λL captures any form of favoritism that is not related to award price or execution performance.33

Finally, εD
t is an idiosyncratic utility shock.

The publicity regulation kicks in when the expected award price without publicity is higher than

$25,000. This introduces a utility shift, η, which translates into a discrete jump in the probability of

advertisement at the threshold. Intuitively, η captures the intensity of regulation enforcement above

the threshold:34

Dt = 1 ⇐⇒ U(P̄1
t , Q̄1

t , L̄1
t ) + η 1

(
P̄0

t > log(25)
)
≥ U(P̄0

t , Q̄0
t , L̄0

t ) (6)

Entry and Bidding Decision. Bidder j’s execution cost for contract t is multiplicative: cjt = c̃jt · ut,

where c̃jt is a firm-specific cost component that is private information of firm j, and ut represents a

common cost component that is known to all bidders but is unobserved by the researcher (Haile and

Kitamura, 2019). The distribution of the firm-specific cost component for group-k firms is given by

Fk
c̃ (·|xt), and each draw c̃jt is independent across j and t conditional on observables. The unobserved

project heterogeneity is given by ut ∼ Ku(·), and is independent from project characteristics (xt),

entry-cost shifters (zt), and the number of potential bidders (Nt).

We assume that bidders are risk neutral. Thus, the Bayes-Nash equilibrium bid function for

group k is multiplicative: βk(cjt|xt, ut, Nt) = ut · β̃k(c̃jt|xt, Nt).35 Each bidder submits a bid of bjt =

b̃jt · ut, where b̃jt = β̃k(c̃jt|xt, Nt) represents the bid for bidder j when ut is one. Therefore, log(bjt) =

log(b̃jt) + log(ut), and the log of the unobserved heterogeneity component acts as an additive mean

shifter to the conditional distribution of log bids.36 37

Finally, we assume that entry costs ωjt are independent across j and t conditional on observed

project characteristics xt. In equilibrium, firms’ participation behavior is characterized by

group-specific thresholds, ω̄k∗
t . Thus, the number of actual bidders nk

t from group k ∈ {L, NL}
distributes binomial with an individual entry probability of ϕk∗(xt, zt, ut, Nt) and Nk

t trials, where

ϕk∗(xt, zt, ut, Nt) = Gk
ω

(
ω̄k∗(xt, zt, ut, Nt)

)
. Our model considers entry shifters zt, which capture

33We remain agnostic about the specific nature of this preference—which could reflect anything from convenience, to
path dependence, to corruption—and focus on the impacts on total procurement spending.

34Since we have documented that contract “manipulation” (i.e., strategic bunching of price estimates) is unimportant
in this setting, for simplicity we abstract away from this action in the model.

35This formulation is discussed by Krasnokutskaya (2011), Proposition 1. The author shows that when the cost function
is multiplicative with unobserved heterogeneity, Bayes-Nash equilibrium bidding strategies are also multiplicative.

36We assume that there is a shadow reserve price set by the buyer at the 99th percentile of the cost function of
local contractors. Establishing a shadow reserve price acknowledges that the buyer is not necessarily forced to accept
unreasonably high bids and allows us to discard equilibria in which firms bid infinity due to the chance of being the
only bidder. This way, the reserve price is scaled by xt and ut, and is almost never binding in compliance with necessary
conditions for identification (Krasnokutskaya, 2011). Related papers either rule out data from auctions with only one
bidder, or assume that in the case of a single bid, the buyer operates as a second bidder (Li and Zheng, 2009; Athey et al.,
2011; Krasnokutskaya and Seim, 2011).

37Note that the buyer utility function is linear on the log-winning bid, so the auction’s log(u) is an additive term on
each side of equation (6), so it is canceled out in the buyer’s publicity choice.
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market-level conditions that affect entry decisions.38

Contract Execution. Contract execution is observed ex-post and corresponds to the magnitude of

cost-overruns, drawn from the distribution Hk
q(·|xt). Thus, Hk

q(·|xt) is group dependent, varies by

observable covariates xt and is directly observed in the data.

Equilibrium is characterized by the buyer choosing a contract’s publicity status that maximizes

her expected utility, and informed potential contractors entering and bidding optimally if expected

profits exceed their entry costs. Finally, contract execution is revealed once the contract concludes.

4.3 Identification

We aim to identify the type-specific distributions of ωjt, c̃jt and qjt, the distribution of the

unobserved heterogeneity ut, and the parameters that govern the buyer’s utility function. For every

contract t, we observe in the data a set of model inputs (xt, zt, Nt) and outputs (Dt, nt, Pt, Qt, Lt). The

model is identified based on three main assumptions:

(i) Contract and market characteristics (xt, zt, Nt) are exogenous.

(ii) Idiosyncratic components of entry cost shocks are (conditionally) independent from

production cost and execution shocks, i.e., ωjt ⊥ (cjt, qjt)|xt.

(iii) Unobserved heterogeneity ut is independent across t with E[ut|xt, zt, Nt] = E[ut] = 1.

Identification in our model involves pinning down primitive distributions of the two types

of bidders (locals and non-locals). In our setting, the contract’s publicity status determines the

composition of participating bidders. The data from non-publicized contracts inform about the

distributions of local contractors, while non-local contractors are only observed on publicized

contracts. Identification of these two distributions requires that the sample of publicized and

non-publicized contracts be selected at random, yet buyers’ publicity choices are driven by

observables, unobservables, and utility shocks. In the spirit of the RDD discussed above, we

leverage the discrete nature of the publicity requirement to obtain quasi-experimental variation

in publicity adoption and thus identify type-specific distributions separately. We now discuss

identification more specifically for the different components of the model.39

Bidding. The empirical challenge involves separately identifying Fc̃ from Ku. The identification

argument relates to Mackay (2020) and builds upon exogenous variation in the number of bidders.40

38For a given vector of observables xt, the entry shifters expand the range of combinations of auction entrants. Relying
only on changes in the number of potential bidders combine counteracting “entry” and “competition” effects discussed
by Li and Zheng (2009).

39In what follows we omit the distinction depending Dt ∈ {0, 1} because it is taken as given by the bidders. To ease
notation, when a contract t is publicized, the set of bidders has two dimensions: i.e., N1

t = (NL
t , NNL

t ) and n1
t = (nL

t , nNL
t ).

40Alternative strategies to identify models with unobserved heterogeneity involve either stringent assumptions on
auction participation or observing the full distribution of bids. Compiani et al. (2020) assumes the number of active

27



In our setting, bidders observe auction characteristics and the set of potential competitors, Nt, but do

not know the set actual competitors, nt. Equilibrium bidding strategies depend on the information

they have in hand: auction bidders that form the same beliefs about the competitive environment

would set the same bidding strategies. Thus, the number of actual competitors (nt|xt, zt, Nt) would

depend on realizations of (random) individual entry cost shocks.

Exogenous variation in the number of entrants allows for identifying N − 1 expected order

statistics of the bidding distribution for each (xt, zt, Nt) combination. Since ut is assumed

independent, one additional competitor under the same bidding strategy is equivalent to one

additional draw from the distribution of normalized bids, Gk
b̃
(·). Restrictions over expected order

statistics approximate the quantiles of Gk
b̃
(·), and if N → ∞, Gk

b̃
(·) is exactly identified. The

underlying cost distribution Fk
c̃ (·) is pinned down from the distribution of Gk

b̃
(·) (Guerre et al.,

2000; Campo et al., 2003). See Appendix F.1 for more identification details and proofs.

Entry. Potential bidders set a threshold for realizations of entry costs. They pay ωjt and enter

auction t only if the realization ωjt is smaller than the expected profit of participating in the auction,

i.e., ωjt < ω̄k
t . Since the probability of participating enters into the expected utility function which

defines the cutoff, the (fixed-point) equilibrium entry cutoff is characterized by a type-specific entry

probability ϕk∗
t = Gk

ω(ω̄
k∗
t ). Identifying Gk

ω(·|xt) from the data entails three steps. First, we observe

the realized fraction of potential bidders that decide to enter each auction t, which implies that, with

enough observations per combination of (xt, zt, Nt), we can estimate ϕk∗(xt, zt, Nt). Then, we use

Equation (5) to back-up the expected utility of entering, conditional on (xt, zt, Nt). The final step

leverages variation in (zt, Nt) to construct combinations of (ϕk∗, ω̄k∗|xt) that pin down Gk
ω(·|xt).

Execution. Contract execution performance (cost overruns) is given by (conditionally) independent

random shocks. Thus, the observed distribution of cost overruns directly reveals Hk
q(·|xt).

Buyer’s Preference Parameters. The buyer’s taste parameters for price, overruns, and local

contractors are identified from variation in contract and market characteristics (xt, zt, Nt). In

particular, variation in the set of potential bidders determines the effects of publicity on price and

on having a local winning the auction. The degree of complexity of the transaction helps pin down

the potential scope for overruns ex-post. Intuitively, keeping other factors fixed, if a transaction

involves a fully specified product, there will be no differences in performance ex-post, which shuts

down that factor in the decision.

bidders can be characterized by an (equilibrium) reduced-form relation, nt = η(xt, zt, ut, Nt) that is weakly increasing
in ut, thus a realization of nt inform about (unobservable) realizations of ut. Roberts (2013) provides a similar
identification argument but leveraging variation in auctions’ reserve price. Alternatively, Krasnokutskaya (2011) follows
a measurement error approach and builds upon deconvolution methods to separately identify the distribution of
unobserved heterogeneity and individual cost functions. The latter requires observing at least two bids per auction.
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4.4 Estimation Approach

We make functional form assumptions to characterize equilibrium conditions of each stage and take

the model to data:41

- Bidding Stage: We specify that the log of individual bids log(b̃jt) is distributed normal with

mean E[b̃k
t |xt, Nt] = [xt, Nt]′αk and variance V[b̃k

t |xt] =
(
exp(x′tν

k)
)2. We further assume that

log(ut) is distributed normal with mean zero and variance σ2
u .

- Entry Stage: The equilibrium entry choices are characterized by type-specific probabilities,

ϕk
t (xt, zt, Nt). We assume ϕk

t (xt, zt, Nt) = Φ
(
[xt, ze

t , Nt]′τk), where Φ(·) denotes the

cumulative distribution of the standard normal distribution, and zt are entry-cost shifters.

The number of participating bidders nk
t (·) is distributed binomial with Nk

t independent draws

with a probability of success ϕk
t (·).42

- Execution Stage: Given that most contracts stay right on budget, we adopt the same

specification as Eun (2018), and censor at zero the observed distribution of cost overruns. We

assume that log(qk
t ) is the latent distribution, while we only observe Qk

t = max{0, log(qk
t )},

where log(qk
t ) distributes normal with mean E

[
qk

t |x
q
t
]
= xq

t
′
γk and variance V

[
qk

t |xt
]
=(

exp{ xq
t
′
ξk}
)2

.

- Publicity Choice: We specify that the difference of buyers’ utility shocks (ε0
t − ε1

t ) distributes

standard normal, so that Pr(Dt = 1) = Φ
(

λP ˜̄Pt + λQ ˜̄Qt + λL ˜̄Lt + η1(P̄0
t > 25) + x′tζ

)
, where(

˜̄Pt, ˜̄Qt, ˜̄Lt

)
are the change in expected outcomes associated with publicity, leaving no publicity

as the omitted category.43 We include agency fixed-effects as well as 1(P̄0
t > 25) to indicate

whether the expected price without publicity is above the regulation threshold.

Our specification provides flexibility to allow all distributions to differ across locals and non-

locals. Moreover, we interact all of our covariates with indicators of non-local bidders.

Estimating Dataset. The data used to estimate the model is the same one used in previous sections,

except for one additional restriction. In order to classify local and non-local vendors, we require

buyer-product combinations to appear at least four times in the full database between 2013-2019,

41Our parametric assumptions are linked to related literature (Krasnokutskaya and Seim, 2011; Hong and Shum, 2002;
Porter and Zona, 1993). Moreover, Krasnokutskaya (2011) indicates that the distribution of firm-specific components and
unobserved heterogeneity closely resembles log-normality. Overall, our results are not sensitive to adding additional
covariates or variations to the functional form. Our data provide enough variation for identifying these distributions
independent from the specific functional form.

42Related papers either assume parametric distributions for the entry costs, which paired with the expected utility
of entering map into well-defined group-specific entry probabilities (Krasnokutskaya and Seim, 2011; Mackay, 2020);
or make functional form assumptions on the entry probabilities, which combined with expected utilities allow for
recovering entry costs (Athey et al., 2011, 2013). We follow the latter approach.

43Our estimation does not restrict the set of values for parameters λP, λQ, and λL. However, in general, we may expect
that buyers dislike paying higher prices or experiencing overruns, so we expect λP and λQ to be negative.
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at least one of which should appear in FBO. This restriction rules out products that are purchased

less often. Table B.7 compares summary statistics for the relevant variables between this selected

sample and the full sample used in Section 3. Overall, given that the sample selection involves

the buyer contracting the same product multiple times, the selected sample includes contracts for

categories that are, on average, less durable (i.e., it over-represents services). Finally, and consistent

with the rest of the analysis, we estimate the model using contracts around the regulation threshold,

i.e., between 10 and 40 thousand dollars.

Estimation Procedure. Our empirical model yields predictions about equilibrium conditions for

suppliers’ participation, bidding, and ex-post execution, with and without publicity. We also

characterize the buyer’s publicity decision. Our estimation strategy proceeds using the simulated

method of moments (Mcfadden, 1989; Pakes and Pollard, 1989). That is, we choose a vector

of parameters θ to generate simulated moments that closely resemble key moments from the

data. Using the parametrized primitives discussed previously, we simulate four sets of moments:

participation decisions, bidding strategies, cost overruns, and publicity decisions.

Our simulation procedure starts with a set of data inputs (xt, zt, Nt) of size T. Then, from every

observation, we generate S random draws of ut. Finally, our setting contemplates that the buyer

decides based on expectations, which are formed conditional on (xt, zt, Nt) and ut, integrating

over Monte Carlo simulated distributions of award price, overruns, and the likelihood of a local

winning. This method, although computationally involved, is useful to circumvent integrating

over potentially non-linear functions, and provides enough flexibility to match theoretical moment

functions that cannot be evaluated directly.

Formally, denote the target mn as a vector of moments from the data. The analogous moments

generated by simulating observations are denoted by ms(θ). Note that this vector depends on the

parameters θ ∈ Θ ⊂ RP. The estimator minimizes the standard distance metric:

θ̂ = argmin
θ

(mn −ms(θ))
′Wn (mn −ms(θ)) (7)

where Wn is the weighting matrix, which is chosen using the standard two-step approach: the

quasi-optimal weight matrix Wn is derived in the first stage, and the parameters are estimated in

the second stage (Gourieroux, Monfort, and Renault, 1993). The vector of parameters corresponds

to: θ = (αk, νk, τk, γk, ξk,~λ, ζ, σ).

We use three sets of target moments. The first set of moments is a vector of means and variances

of the outcome variables, as well as its interaction with the relevant covariates. The relevant

outcome variables are the auction price, the number of bidders, local winner, the magnitude of

cost overruns, an indicator of any cost-overrun, and publicity choices. The second set of moments

consists of means of these same outcome variables conditional on partitions of the domain of

contract prices, and are estimated separately for goods and services. Finally, the third set of
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moments corresponds to a vector of normalized observation frequencies on the relevant window

of contract prices. Stacking together these three vectors, we obtain the vector mn of 357 moments

that we seek to match with the model. We use the stochastic optimization algorithm Differential

Evolution (Storn and Price, 1997) to perform the objective minimization.44 The details of the

estimation procedure are discussed in Appendix G.

4.5 Estimation Results

We estimate the model’s parameters of publicity selection, entry, bidding, and execution, and

combine these estimates with model equilibrium conditions to recover the primitive distribution

of production and entry costs for locals and non-locals. These estimates are inputs for the policy

counterfactuals in Section 5.

4.5.1 Estimates

To facilitate the interpretation of coefficients, Table 3 shows the marginal effects on the relevant

outcomes for the set of coefficients associated with the bidding stage. Appendix Table B.8 displays

the underlying coefficient estimates with their corresponding standard errors.45

Several findings are worth highlighting. First, bidders are less prone to participate if the contract

involves a service or a relatively complex product. Thus, auctions for these types of products are

less competitive. In line with the evidence presented in Section 3.5, non-local contractors are 72

p.p. more likely to participate than locals. This is consistent with the fact that bidders reduce

their probability of entering if they observe more potential non-local competitors: one additional

non-local contractor reduces the entry by 7.4 p.p.

Second, bids from non-locals are 4 p.p. lower than bids from locals. Another relevant feature

is that unobserved heterogeneity is important in our data. Most of the variation in bidding is

explained by common factors instead of variation between bidders within auction. The standard

deviation of (log) unobserved heterogeneity is 27 times larger than the bids’ standard deviation

when log(ut) = 0.46

Third, the execution shock depends on the transacted product: the mean of log-overruns shocks

is substantially higher for more complex products. In line with the reduced-form results, the

difference in cost overruns between locals and non-locals is sizable, with non-locals having a mean

44This algorithm performs a (parallel) direct search approach; it does not rely on gradient methods for minimizing
possibly nonlinear and non-differentiable continuous space functions.

45Although the model is estimated altogether, Table 3 and Table B.8 present estimates in different columns to facilitate
visual interpretation. The procedure to estimate standard errors is discussed in Appendix G.2.1.

46It is not surprising that the unobserved heterogeneity term captures a sizable proportion of the price variance,
considering at least two significant factors. First, in our data the contract price corresponds to the total awarded value,
not distinguishing between the required quantity and unit price. Thus, the unobserved heterogeneity term may capture
important differences in quantities across contracts. A second unobserved relevant factor are the travel costs between
bidders and the place of delivery or execution.
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Table 3: Model Estimates: Marginal Effects

Entry Bidding Execution

x̄ ∆x ∆ϕ/∆x ∆b̃/∆x ∆q/∆x ∆(q > 0)/∆x
Panel A: Marginal Effects
Service 0.38 1 -0.024 0.000 0.075 0.013
Degree of Complexity 0.09 0.1 -0.028 0.000 0.163 0.030
Non-Local 1 0.721 -0.040 0.235 0.039
Non-Local×Complexity 0.1 0.001 -0.003 0.009 0.001
Last Month 0.25 1 -0.333
Exp. Duration > Median 0.50 1 0.127 0.021
NL 6.08 1 0.000 -0.002
NNL 3.34 1 -0.074 0.010

Panel B: Standard Deviation
Estimated (σ̂) 0.076 1.035
Unob. Het. (σu) 2.168

Publicity
Panel C: Marginal Effects ∆x ∆Pub/∆x

Exp. Price 0.1 -0.0243
Exp. Cost-Overruns 0.1 -0.0095
Exp. Local Winning 0.1 0.0228
Above $25K 1 0.3263

Number of Observations 24,135

Notes: This table shows model estimates of marginal effects. Panel A shows the marginal effects of different covariates
on the main dependent variables related to bidders’ actions. Covariates are listed in the first column. Marginal effects are
computed at the mean of each covariate, shown in column two. The third column shows the change in the covariate used
to estimate the marginal effect. Columns four through seven show the value of the marginal effects on different dependent
variables: the probability of entry, the level of the bid, the amount of cost overruns, and the probability of any positive
overruns. Panel B shows the estimated standard deviation of the normalized bids and the estimated standard deviation
of the unobserved heterogeneity component. Panel C displays the marginal effects of four variables on the probability of
publicizing the contract solicitation in FBO.gov. The variables are: expected log-award price, expected log-cost-overruns,
expected probability of a local contractor winning, and being above $25K in expected award price without publicity. These
coefficients are jointly estimated using Simulated Method of Moments (SMM).

shock that is 23 p.p. higher. Interestingly, the difference between these two groups is relatively

stable over different degrees of product complexity.

Panel C of Table 3 shows that if buyers anticipate that publicity leads to a 10% reduction in

awarding price, they increase their likelihood of publicizing by 2.4 p.p. However, a 10% increase

in cost overruns reduces the probability of advertising by only 1 p.p. This asymmetry in the taste

parameters for (log) dollars at the award stage and cost overruns ex-post is interesting. One possible

explanation is that buyers may underestimate the value of contract execution when they do not deal

directly with the contractor during the execution stage.47

47In interviews with procurement officers, we noted that some agencies separate personnel in charge of the contract
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Buyers have a preference for local vendors. Anticipating a 10 p.p. reduction in the likelihood

of a local contractor winning leads buyers to reduce the probability of publicity by 2.3 p.p. This

coefficient is meaningful in magnitude: the buyer is indifferent between increasing the probability

of a local winner by 10% and reducing the award price by roughly 10%. Finally, predicting that the

price without advertising will exceed $25,000 increases the likelihood of publicity by 32 p.p.

Model Fit. Overall, the model closely replicates the key empirical patterns in the estimation sample.

Appendix Figure A9 compares the distribution of model-simulated equilibrium outcome variables

with actual data. The simulated data resembles actual publicity choices, prices, the number of

bidders, and the share of contracts assigned to local contractors. Panels (e) and (f) separate cost

overruns by products and services. We find that, for services, the model slightly under-predicts the

probability of having any (positive) cost-overrun, but over-predicts the magnitude of cost-overruns.

This dichotomy suggests that buyers may face frictions when introducing contract modifications

ex-post that our model does not account for.

4.5.2 Recovering the Project Cost Distribution

We recover the distribution of project costs by leveraging the methodology introduced by Guerre,

Perrigne, and Vuong (2000), and Campo, Perrigne, and Vuong (2003). This method combines the

first-order conditions (Equation 4)—subject to boundary conditions—with estimated bids to recover

the inverse bid function. In our setting, the first-order condition depends on the probabilities of

different combinations of number of local and non-local bidders. These probabilities are formed

from simulations based on the model’s participation parameters. Finally, strict monotonicity

between the bid and the inverse bid functions enables us to obtain an estimate of project costs from

the estimated distribution of bids.

Figure 7(a) shows the probability density function of log costs log(c̃jt) for both groups. Local

bidders have slightly higher costs than non-locals. Appendix Figure A11 displays the mean

log(b̃j(c̃)) as a function of the log cost. As expected, markups decrease with higher cost draws.

4.5.3 Recovering Entry Costs

We recover group-specific entry costs using the equilibrium conditions for optimal entry behavior

discussed in Section 4.1.2. A potential bidder compares the draw from the entry-cost distribution

Gk
ω with the expected utility of entering, i.e., ϕk(xt, zt, Nt) = Gk

ω

(
π̄k(xt, Nt, zt)

)
. Our estimated cost

distributions Fk
c̃ (c) allow us to estimate the (ex-ante) predicted utility of participating (Equation 5)

and compare it to observed entry behavior (Athey, Levin, and Seira, 2011).

Figure 7(b) displays estimated entry cost distributions and shows that they differ substantially

across groups. On the one hand, roughly 60% of non-local firms face zero entry cost (i.e., they

award and contract management phases of the procurement process.
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Figure 7: Estimated Cost Distributions

(a) Production Cost
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Notes: Panel (a) shows the estimated probability density function (PDF) of log production costs for local and non-local
contractors. Panel (b) shows the estimated entry cost probability and cumulative density distributions (CDFs). The CDFs
are estimated comparing the entry probability at different levels of predicted (log) utilities. The PDFs are computed as
the numerical derivatives of the CDFs, using bins with a width size of 0.025. Both plots are estimated for covariates fixed
at sample averages and log(u) = 0. The plotted distribution of log costs in panel (a) is smoothed using a kernel. The
raw distributions of entry costs in panel (b) are smoothed using a 7-degree polynomial fit. Zero is the minimum expected
utility consistent with entry.

enter with probability one), and 90% enter when the entry cost is less than 0.1 log units. On the

other hand, local firms face substantially higher entry costs. Indeed, with a 60% chance, they would

not enter for any of the values included in the estimated range of existing expected utilities. The

estimated entry-cost asymmetry shapes the composition of actual bidders and, subsequently, the

winning bids.

Appendix Figure A10 shows how the composition of actual competitors (and the identity of

the winner) depends on the number of potential non-local contractors. The number of actual

bidders decreases as the number of potential non-local bidders grows. This is because increased

competition discourages local bidders’ participation, making it substantially more likely that a

non-local contractor wins.

4.6 Effects of Increasing Competition through Publicity

Having estimated the primitives of the model as a function of observable characteristics, we can

examine the extent to which the model can replicate the results from Section 3. Furthermore, the

model allows us to evaluate contract outcomes with and without publicity, not only for contracts

around the threshold but throughout the range of awards included in our sample.

Figure 8 displays the variation in contract outcomes as a function of the expected price. We

compare the observed regime with three alternative scenarios: one with no publicized contracts,

one with all publicized contracts, and one where officers are free to choose throughout the expected

price range (i.e., no threshold regulation). The results are in line with our reduced-form analysis.
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Figure 8: Policy Evaluation Using Model Estimates
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(c) Log Prices
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(d) Overruns
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Notes: This figure shows different outcome variables around the threshold, for different counterfactual policies. Panel (a) shows
the number of bidders, Panel (b) the probability of awarding to a local vendor, Panel (c) the log award price, and Panel (d)
log overruns. The x-axis in every graph is the expected award value of the contract without publicity. In every graph, we
compare the current policy design (red line) with counterfactual regulations mandating full and zero publicity. We also include a
counterfactual policy of no threshold, implying that the buyers may freely choose whether to publicize contracts throughout the
expected award range.

Publicizing contract solicitations allows the participation of non-local bidders, which are more

prone to experience overruns and have substantially lower participation costs, discouraging locals’

participation. Thus, enhancing contract participation through publicity reduces prices ex-ante, yet

increases prices ex-post.

To assess which of these two opposing effects dominate, we consider the following definition of

the final price pD
F,t:

pD
F,t = pD

I,t(1 + qD
t )

where Dt ∈ {0, 1} denotes contract t’s publicity status, pD
I,t is the log award price, and qD

t is the

share of cost overruns ex-post.

Figure 9 compares contract award prices, cost overruns, and final prices, with and without
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publicity, for different levels of complexity. The gray line at zero marks the no-publicity benchmark.

The orange dashed line shows the effects of publicity on award price, and the green dashed line

shows the effect on cost overruns. Both effects are more pronounced for complex contracts. Relative

to the evidence provided in Section 3, the model sheds additional light on the mechanisms behind

the first result. On the one hand, auctions that require complex contracts have a higher variance

in bid functions, which increases the support of possible price reductions from additional bidders.

On the other hand, auctions for complex contracts face lower participation, meaning that the effect

of an extra bidder is higher than when there are already many competitors. Finally, the blue solid

line shows the combined effect of ex-ante price reductions and ex-post price increases. Publicity

reduces total prices for contracts with low levels of complexity but increases them for more complex

acquisitions.

Figure 9: Effects of Publicity on Ex-ante, Ex-post, and Final Prices
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Notes: This figure shows the effect of publicity on (log) award prices, (log) cost overruns, and (log) final
prices, as a function of product complexity. Effects are measured relative to a benchmark of no publicity,
represented in the horizontal line at zero. Circles represent the mean effect by complexity bin. Each line
corresponds to a flexible polynomial fit. The degree of complexity is defined as the log of the product
category’s average overruns for contracts below $20,000.

These findings align with and extend our reduced form results. They also provide quantitative

evidence consistent with the idea introduced by seminal papers on incomplete contracting: there

exists a degree of transaction complexity beyond which promoting competition may backfire. When

there’s a high number of possible contingencies during the execution stage, ensuring adequate

performance ex-post may be more important than reducing prices ex-ante. (Williamson, 1976; Bajari

and Tadelis, 2001; Bajari et al., 2014; Bolotnyy and Vasserman, 2019).
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5 Counterfactual Analysis

We use our model to evaluate the implications of counterfactual policies. Our counterfactuals

build upon the fact that the buyer endogenously influences how much competition a contract gets,

conditional on complying with publicity rules. We focus on the two aspects that shape competitive

outcomes in this setting: buyer preferences and rules design. In the first counterfactual exercise,

we analyze the consequences of removing publicity rules, allowing the buyer to decide whether

to advertise the solicitation unrestrictedly. The second exercise studies the effects of alternative

regulatory designs.

5.1 The Strategic Value of Delegating Competition Promotion to the Buyer

What are the implications of allowing the buyer to choose whether to openly publicize a contract,

as opposed to mandating rules that constrain the buyer’s discretion? This trade-off pertains to the

more general problem of the delegation of authority within organizations (Aghion and Tirole, 1997)

and has been frequently analyzed in the context of public procurement.48

Conceptually, the publicity requirement acts as a discontinuous jump in the cost of not

publicizing. Below the threshold, buyers choose whether to advertise the contract solicitation with

full discretion; above the threshold, regulation forces them to publicize more often than desired.

Using the estimated model parameters, we simulate buyers’ hypothetical decisions in a no threshold

situation, with full discretion over publicity decisions for the whole range of contracts in our

sample. We benchmark this counterfactual against: (i) the current policy design, (ii) a baseline of

no publicity for any contract, and (iii) a full publicity regulation, where all contracts are publicized

regardless of their size.

Figure 10 displays the results. Panel (a) shows the fraction of publicized contracts as a function

of award values. Panel (b) shows changes in log final prices relative to no publicity, as a function of

product complexity. Several things are worth noting. First, relative to no publicity (the benchmark

gray line at zero), full discretion (no threshold) leads to lower contracting costs regardless of the

contract’s complexity. This highlights the value of letting buyers take advantage of their knowledge

of the requirement specifics and local market conditions. Relative to full publicity, however, the

effects become ambiguous. For low degrees of complexity, full publicity delivers larger cost savings

than discretion, yet for highly complex transactions discretion leads to lower final prices. The

current regulation can be thought of as a combination of these two counterfactuals, providing

discretion below the threshold and nudging higher levels of publicity above it. The key takeaway

of this exercise is that the value of discretion increases with the transaction’s underlying degree of

complexity.

48See Kelman (1990); Coviello et al. (2018); Carril (2022); Szucs (2020); Bandiera et al. (2021); Bosio et al. (2020); Decarolis
et al. (2020).
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Figure 10: Counterfactual Analysis I: Delegation of Publicity Decision to the Buyer

(a) Publicity Adoption

10 15 20 25 30 35 40
Value

0.0

0.2

0.4

0.6

0.8

1.0

Pu
bl

ici
ty

 A
do

pt
io

n Current Policy

No Threshold

(b) Log Final Price Effect

0.05 0.10 0.15 0.20 0.25 0.30 0.35
Product Complexity

0.04

0.02

0.00

0.02

0.04

0.06

Lo
g 

Fi
na

l P
ric

e

Full-Publicity

No-Threshold

Current Policy

Notes: Panel (a) shows the share of publicized contracts as a function of expected award value in the absence of publicity.
The orange line displays the current policy with a regulation threshold at $25,000. The red line describes a counterfactual
with no regulation threshold, meaning that each buyer can freely decide whether to publicize contracts throughout the
expected award range. Panel (b) shows changes in log final prices as a function of product complexity, relative to a
benchmark of no publicity, and for different counterfactual policies. The blue line is a counterfactual where all contracts
are publicized, the orange line represents the current policy (with a threshold at 25,000), and the red line shows the no
regulation threshold counterfactual. Each line corresponds to a flexible polynomial fit. The degree of complexity is defined
as the log of the product category’s average overruns for contracts below $20,000.

The Role of Buyers’ Preferences. In our setting, the buyer affects the level of contract competition

motivated by interests that are not necessarily aligned with those of the organization. Thus,

the agency problem hinges on the degree of misalignment between the buyer’s (agent) and the

organization’s (principal) objectives. Extensive theoretical literature has studied the design of

incentives to increase the alignment between the agent’s actions and the organization’s (principal)

objectives (Laffont and Tirole, 1993) varying the scope of rationality and completeness of contract

menus.

To shed light on this agency problem, we study the extent to which buyers’ specific preference

parameters explain contract outcomes. To do so, we leverage our model estimates and vary the

degree of “alignment” in buyers’ preferences, focusing on two hypothetical scenarios. First, we say

that the buyer has “Cost-Oriented Preferences” if she puts equal weight on price reductions ex-ante

and ex-post, and has no idiosyncratic preference for local contractors. Second, we say that the

buyer has “Local-Oriented Preferences” if they are geared towards favoring local contractors with

no emphasis on costs. The specific preference parameters under each scenario are described in Table

4. It is worth noting that these two benchmark scenarios are based on the estimated coefficients,

but turn off specific taste parameters. Therefore, they can be seen as reference points for policies

oriented to affect buyers’ motives.
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Table 4: Buyers’ Preferences

Estimated Benchmarks

Preference Cost-Oriented Local-Oriented
Parameters Preference Preference

λP -0.636 -0.636 0
λQ -0.245 -0.636 0
λL 0.588 0 0.588
Mean Pub. 0.274 0.408 0.263

Notes: This table shows estimates of buyer preferences parameters. The first column shows the estimated
parameters for ex-ante prices, ex-post overruns, and awarding to local contractors. The second column shows
the preference parameters associated with a buyer with cost-oriented preferences, i.e., with no idiosyncratic
preference for local contractors. The third column shows preference parameters for a buyer that is fully
oriented to local contractors, without a preference for prices ex-ante or ex-post. The last row describes the
average use of publicity under each of these types of preferences.

Figure 11 shows changes in (log) final prices, relative to a benchmark of no publicity, as a

function of the level of complexity of the purchase, and for different counterfactual scenarios.

We consider preference counterfactuals assuming full discretion (i.e., no threshold), and also

compare these to the full publicity counterfactual discussed above. If buyers had “Cost-Oriented

Preferences” they would exercise discretion to generate savings of roughly 1.5 percentage points

relative to observed preferences, across the full spectrum of product complexity. On the other

hand, since “Local-Oriented” agents would seek to benefit local contractors, they would publicize

infrequently and, as a result, final prices would be higher than with no publicity for most of the

complexity spectrum. Interestingly, if contracts are complex enough, the full publicity rule obtains

prices that are (even) higher than the ones obtained by “Local-Oriented” buyers, because favored

local contractors tend to be better at executing these contracts, reducing cost overruns.

The existing literature on rules versus discretion in public procurement emphasizes that

regulation can be an effective antidote to waste and abuse whenever these are pervasive, yet it

can backfire if buyers are relatively aligned with the government’s goals (Carril, 2022; Bosio et al.,

2020). Our findings contribute to this literature by highlighting that this trade-off depends as

well on the level of contract complexity. Publicity rules can be detrimental even when agents are

misaligned, since favoring local vendors has the positive effect of reducing cost overruns. On the

other hand, strict publicity requirements may reduce procurement costs even when agents are

aligned, provided that the transaction unit is sufficiently simple.49

49The intuition is that strict publicity requirements leverage the ex-ante price benefits of competition by removing the
idiosyncratic variation in buyers’ preferences that leads them not to publicize some contracts. At the same time, this is
done at virtually no cost ex-post since simple contracts tend not to experience any overruns.
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Figure 11: Counterfactual Analysis II: Buyers’ Preferences
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Notes: This figure shows changes in log final prices as a function of product complexity, relative to a
benchmark of no publicity, and for different counterfactual policies and assumptions on buyers’ preferences
parameters. The blue line is a counterfactual where all contracts are publicized and the red line represents
the current policy (with a threshold at 25,000). The green and brown dashed lines represent counterfactuals
where buyers have cost-oriented and local-oriented preferences, respectively. Each line corresponds to a
flexible polynomial fit. The degree of complexity is defined as the log of the product category’s average
overruns for contracts below $20,000.

5.2 Complexity-Based Publicity Requirements

We now take the estimated preferences as given and vary the regulation design depending on the

level of contract complexity. The proposed exercise contemplates identifying the cost-minimizing

level of publicity requirements for each degree of complexity. This exercise refers to publicity

requirements as the share of contracts that buyers must publicize. Even though other, more

sophisticated regulatory tools can enhance procurement efficiency, in practice the design of

procurement rules faces a constraint on their level of intricacy. Therefore, we choose to analyze

counterfactual complexity-based requirements considering that they would represent relatively

minor modifications to the current environment and thus could be realistically implemented.50 We

show that even this minor regulatory change may result in substantial procurement cost savings.

We proceed in three steps. First, we simulate contract outcomes under different levels of

product-specific publicity requirements that buyers are mandated to meet. Second, we estimate

the final price under each of these requirements. Finally, we identify the publicity requirement that

yields the lowest final price at each complexity level.

Figure 12 summarizes this procedure. Panel (a) shows the change in final price relative to no

50The current version of FAR Part 5 (Publicizing Contract Actions) allows buyers to apply for exemptions if they prefer
not to publicize a contract. The proposed policy design could be implemented by simply varying the set of exemptions
that different product categories are allowed to invoke. For example, if the contract solicitation involves a well-defined
product for which the product category’s cost-minimizing level of publicity requirement is 100%, then there would be
no exemption to be invoked. Conversely, if the solicitation requires a relatively complex product, the buyer could have
more (or total) discretion to file exemptions.
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Figure 12: Counterfactual Analysis III: Complexity-based Requirements

(a) Publicity Adoption
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(c) Log Final Price Effect
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Notes: Panel (a) shows changes in log final prices as a function of product complexity, relative to a benchmark of no
publicity, and for different counterfactual policies. The blue line is a counterfactual where all contracts are publicized,
the red line shows the no regulation threshold counterfactual, and each of the green lines correspond to counterfactuals
where some share of contracts (displayed as a label) are required to be publicized. Panel (b) shows the level of publicity
requirement that yields the minimum final prices for different levels of complexity. Panel (c) is analogous to Panel (a),
but instead of the various green lines with fixed shares of publicity requirements, it depicts the cost-minimizing policy
that requires different levels of publicity at each degree of complexity. The price effects of this policy are shown as the
brown-dashed line, which corresponds to the lower envelope of all possible green lines illustrated in Panel (a). Each line
corresponds to a flexible polynomial fit. The degree of complexity is defined as the log of the product category’s average
overruns for contracts below $20,000.

publicity, as a function of contract complexity, and for different levels of publicity requirements.

Panel (b) illustrates the publicity requirement that minimizes the final price at different complexity

levels. Panel (c) replicates Panel (a) but shows the effect of tailored publicity requirements. The

latter is depicted as the brown-dashed line in Panel (c) and corresponds to the lower contour of the

price effects for different requirement levels in Panel (a). The tailored publicity requirements alter

the span of the buyer’s actions. In particular, when the unit of purchase is simple, it removes the

buyer’s discretion entirely to leverage the benefits of enhanced competition. However, it provides

more discretion when contracts are more complex in order to attenuate the negative consequences

on contract implementation ex-post.

5.3 Comparing Policy Counterfactuals

Table 5 consolidates the visual evidence presented in Figures 10, 11, and 12, and compares the

mean changes in final prices under each of these scenarios, relative to a baseline of no publicity

for any contract. The current policy design, which introduces publicity requirements at $ 25,000,

reduces, on average, the final price by 1.6%. If the publicity choice was delegated to the buyer,

the mean reduction would be 1.3%. A uniform full-publicity rule would reduce contract costs

by 3%. Finally, the counterfactual policy that tailors the publicity requirements to the purchase’s

degree of complexity outperforms all the other regulations, reducing average prices by 3.6%. The

2 percentage point difference in cost savings between the current regime and the complexity-based
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design corresponds to $104 million per year.51

Table 5: Effects of Counterfactual Scenarios

Mean 95 Perc C. I.

Current Policy -0.0164 [ -0.0195 , -0.0133 ]

Delegate the Decision to the Buyer

Current Preferences -0.0136 [ -0.0161 , -0.0111 ]
Buyer with Price-Oriented Pref. -0.0304 [ -0.0335 , -0.0271 ]
Buyer with Local-Oriented Pref. -0.0068 [ -0.0092 , -0.0043 ]

Alternative Regulation Designs

Full Publicity -0.0306 [ -0.0357 , -0.0256 ]
Complexity-Based Publicity Req. -0.0367 [ -0.0412 , -0.0323 ]

Notes: This table reports mean equilibrium effects on log final prices under different counterfactual scenarios.
All effects are measured relative to a benchmark with no publicity. The first row describes the current policy,
with a threshold at $ 25,000. The middle set of rows shows a counterfactual without publicity requirements,
leaving publicity decisions to the buyer. This is computed under different assumptions regarding buyers’
preferences. The bottom two rows show counterfactual scenarios with alternative regulation designs,
specifically one with full publicity and one with cost-minimizing publicity requirements that depend on
the level of complexity of the product. Confidence intervals are constructed via bootstrap.

Finally, we also benchmark the consequences of these policy designs with the hypothetical

situation in which the buyer has Cost-Oriented preferences. We find that the complexity-based

publicity requirement achieves better outcomes than having Cost-Oriented Buyers. This is a

significant result from a policy standpoint since it implies that arguably modest improvements to

the regulation design achieve, on average, larger cost savings than any incentive mechanism aimed

at aligning buyers’ objectives.

6 Conclusion

This paper studies the relationship between competition and procurement contract outcomes.

Even though procurement contracts represent a key component of the economy, there is minimal

evidence on the implications of policies oriented to expand competition, considering not only

the award price but also the post-award contract execution. We provide extensive evidence on

the effects of increasing competition through publicity, using data and policy variation from U.S.

Department of Defense procurement.

51This amount is calculated extrapolating to all competitively awarded contracts from the Department of Defense in
2018 with values between $10,000 and $150,000 (i.e., below the Simplified Acquisition Threshold).
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Our identification strategy leverages a regulation that generates quasi-experimental variation

in the extent to which contract opportunities are broadly advertised to potential suppliers. We

find that contract publicity increases contract competition. The added competitive pressure results

in lower acquisition prices; however, broader dissemination leads to a different pool of vendors,

who perform worse ex-post. Our analysis shows that the degree of contract complexity determines

the extent of this trade-off. Promoting competition reduces total contract costs only for simple

transactions, as relatively complex ones are more exposed to cost overruns and delays in the

execution stage.

Motivated by this evidence, we develop and estimate an equilibrium model of competition for

procurement contracts. The model allows us to estimate the underlying firms’ characteristics that

shape adverse selection in this market and buyers’ objectives when promoting competition through

advertising. We also use our estimates to evaluate relevant counterfactual policies. Our results

show that delegating competition promotion to the buyer is only beneficial when the transaction

unit is complex. On average, the buyer achieves better outcomes than in regulated settings with

either zero or full publicity. However, when the transaction unit is relatively simple, imposing

full-publicity rules is preferred to delegation, as the risks at the execution stage are relatively minor.

Moreover, we use our model to engineer improvements to the current policy design by introducing

publicity requirements that are tailored to the degree of complexity of the purchase. We find that

departing from a uniform regulation would significantly reduce procurement costs.
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A Additional Figures

Figure A1: Contract Timeline and Data Sources
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Notes: This figure presents a timeline of events associated with a typical contract. Milestones located above the arrows correspond
to notices that are published on the government’s point of entry (fedbizopps.gov). Milestones below the arrows generate
information that is recorded on the Federal Procurement Data System (FPDS) - Next Generation.
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Figure A2: FedBizzOpps

(a) List of Opportunities (b) Example Solicitation

Notes: This figure shows two screenshots of FBO.gov.captured on Feb 13, 2019. Panel (a) shows a list of contract solicitations
(opportunities). Panel (b) shows a particular solicitation for athletic socks, required by an Army procurement office.
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Figure A3: Distribution of Contract Prices

(a) Non-publicized contracts (D = 0)
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(b) Publicized contracts (D = 1)
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Notes: This figure shows the empirical distribution of the number of contracts at different price bins. Panel (a) shows the
distribution of non-publicized contracts (D = 0). Panel (b) shows the distribution of publicized contracts (D = 1). Panel (c)
displays the overall distribution, i.e., the sum of publicized and non-publicized contracts at every price. The blue line corresponds
to a polynomial fit of degree five. The orange dashed lines in panels (b) and (c) represent the distribution of contract prices after
re-centering publicized contracts by their price effect. The green dashed line in panel (c) represents the corresponding overall
interpolation in the absence of price effects and bunching.
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Figure A4: Distribution of Contract Prices

(a) Non-publicized contracts (D = 0)
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(b) Publicized contracts (D = 1)
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Notes: This figure shows the empirical distribution of the number of contracts at different price bins. Panel (a) shows the
distribution of non-publicized contracts (D = 0). Panel (b) displays the distribution of publicized contracts (D = 1). The blue
line corresponds to a polynomial fit of degree five. The orange dashed lines in panels (b) and (c) represent the counterfactual
distributions in the absence of price effects and bunching. The counterfactual distributions stem from the proposed framework.
In panel (a), The comparison between the solid blue and the dashed orange lines provide a visual interpretation of the mass of
bunched contracts. The comparison between the dashed blue and the dashed orange lines in panel (b) inform visually about the
distribution of price effects.
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Figure A5: Pre-award Characteristics Around the Threshold
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(c) Simplified acquisition procedures
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(d) Service contracts
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Notes: This figure presents four binned scatter plots, which depict an average pre-award characteristic by bins of award amounts,
as well as linear and quadratic fits at each side of $25,000. The pre-award characteristic in each Panel is as follows: (a) an indicator
equal to one if the contract was solicited the last month of the fiscal year (September); (b) an indicator equal to one if the contract
was set-aside for a preferential group (e.g. small businesses); (c) an indicator equal to one if the contract was awarded using
simplified acquisition procedures; (d) an indicator equal to one if the award is for a service contract. The data source is the
Federal Procurement Data System-Next Generation. The sample consists of non-R&D definitive contracts and purchase orders,
with award values between $ 10,000 and $ 40,000, awarded by the Department of Defense in fiscal years 2015 through 2019.
Award amounts are discretized into right-inclusive bins of $3,000 dollars length.
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Figure A6: Publicity Effects on Post-Award Contract Performance
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(c) Number of Contract Modifications (Ex-Post)
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Notes: This figure presents three binned scatter plots, which depict an average post-award performance metric by bins of award
amounts, as well as linear and quadratic fits at each side of $25,000. The outcomes in each Panel are as follows: (a) number of
days of contract implementation delays; (b) cost-overruns as a share of award value; (c) number of modification to the original
contract. The data source is the Federal Procurement Data System-Next Generation. The sample consists of non-R&D definitive
contracts and purchase orders, with award values between $ 10,000 and $ 40,000, awarded by the Department of Defense in fiscal
years 2015 through 2019. Award amounts are discretized into right-inclusive bins of $3,000 dollars length.
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Figure A7: Correlation Complexity Degree with Other Variables
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Notes: This figure displays the correlation between our measure of complexity (i.e., product-level average
cost-overruns for contracts under $20K) with product-level average delays (Panel (a)) and product-level (log)
average number of words contract synopsis from FBO. The number of words variable was residualized on office,
type of solicitation, and year fixed effects, because the text often contains information specific to the office and
the solicitation type. Every dot represents the mean of the Y-axis variable at different quantiles of the complexity
measure. The orange line provides a (linear) regression fit at the product level. The slope coefficient (and SE) are
presented in the graphs.

Figure A8: Complexity Distribution
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Notes: This figure presents the probability density function (PDF) of product complexity. Even though there’s
wide heterogeneity in the degree of complexity, the bulk of contracts in our sample have relatively low levels of
complexity. The degree of complexity is defined as the log of the product’s average overruns, and it is calculated on
all contracts for the same product category that are below $20,000. The plotted distribution of log costs is smoothed
using a kernel.
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Figure A9: Model Fit

(a) Publicity Status
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Notes: This figure presents the model fit, based on a simulated method of moments estimation. In each panel, relevant outcome
variables are shown as a function of the awarding price. Actual data points are presented in blue, while model-based simulated
data are presented in orange. Panel (a) presents the density of contract prices, Panel (b) the fraction of publicized contracts, Panel
(c) the number of actual bidders, Panel (d) the fraction awarded to local contractors, Panel (e) average cost overruns, and Panel
(f) the probability of having any overrun. The last two panels separate goods from services.
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Figure A10: Auction Entry and Winner Identity

(a) Composition of Bidders

1 2 3 4 5 6 7 8
N Potential Non-Locals

1

2

3

4

5

N 
Ac

tu
al

 B
id

de
rs

nL 
nNL 
nL + nNL

(b) Identity of the Winner
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Notes: This figure presents participation decisions and subsequent winner identity as a function of the number of potential
bidders. Panel (a) shows the number of actual bidders from each group, Panel (b) displays the average probability of awarding
the contract to a local bidder. The higher the number of potential non-local contractors, the less likely that local contractors
participate and win. These features connect directly with the fact that local contractors have substantially higher participation
costs; thus, in equilibrium, reductions in predicted utility due to increased competition discourage their participation. Both
figures were generated keeping constant (at the mean) the number of potential local contractors.

Figure A11: Bidding Function
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Notes: This figure displays the bidding function of local and non-local contractors. This plot is estimated holding covariates fixed
at their mean value and assuming log(u) = 0. The plotted distribution of log bids is smoothed using a kernel.
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Figure A12: Heterogeneous publicity adoption by major departments
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Notes: This figure presents three binned scatter plots, which depict the share of contracts publicized in FedBizzOpps by bins of
award amounts, as well as linear and quadratic fits at each side of $25,000. The data source is the Federal Procurement Data
System-Next Generation. The full sample consists of non-R&D definitive contracts and purchase orders, with award values
between $ 5,000 and $ 45,000, awarded by the Department of Defense in fiscal years 2011 through 2017. Panel (a) restricts the
sample to awards made by the Army. Panel (b) restricts the sample to awards made by the Navy. Panel (c) restricts the sample to
awards made by the Air Force. Award amounts are discretized into right-inclusive bins of $2,500 dollars length.

Figure A13: Heterogeneous effects on competition by major departments
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Notes: This figure presents three binned scatter plots, which depict the average number of offers received by bins of award
amounts, as well as linear and quadratic fits at each side of $25,000. The data source is the Federal Procurement Data System-Next
Generation. The full sample consists of non-R&D definitive contracts and purchase orders, with award values between $ 5,000
and $ 45,000, awarded by the Department of Defense in fiscal years 2011 through 2017. Panel (a) restricts the sample to awards
made by the Army. Panel (b) restricts the sample to awards made by the Navy. Panel (c) restricts the sample to awards made by
the Air Force. Award amounts are discretized into right-inclusive bins of $2,500 dollars length.
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Figure A14: Heterogeneous effects on winner characteristics by major departments
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Notes: This figure presents three binned scatter plots, which depict the share of contracts awarded to a foreign firm by bins of
award amounts, as well as linear and quadratic fits at each side of $25,000. The data source is the Federal Procurement Data
System-Next Generation. The full sample consists of non-R&D definitive contracts and purchase orders, with award values
between $ 5,000 and $ 45,000, awarded by the Department of Defense in fiscal years 2011 through 2017. Panel (a) restricts the
sample to awards made by the Army. Panel (b) restricts the sample to awards made by the Navy. Panel (c) restricts the sample to
awards made by the Air Force. Award amounts are discretized into right-inclusive bins of $2,500 dollars length.

Figure A15: Heterogeneous effects on performance by major departments

.0
4

.0
6

.0
8

.1
.1

2

O
ve

rru
ns

 (r
el

at
ive

 to
 in

itia
l d

ol
la

rs
)

10 15 20 25 30 35 40
Expected award amount ($K)

Army

.0
4

.0
6

.0
8

.1
.1

2

O
ve

rru
ns

 (r
el

at
ive

 to
 in

itia
l d

ol
la

rs
)

10 15 20 25 30 35 40
Expected award amount ($K)

Navy

.0
4

.0
6

.0
8

.1
.1

2

O
ve

rru
ns

 (r
el

at
ive

 to
 in

itia
l d

ol
la

rs
)

10 15 20 25 30 35 40
Expected award amount ($K)

Air Force

Notes: This figure presents three binned scatter plots, which depict average cost overruns by bins of award amounts, as well as
linear and quadratic fits at each side of $25,000. Cost overruns are computed as the difference between actual obligated contract
dollars and expected total obligations at the time of the award, divided by expected obligations. The data source is the Federal
Procurement Data System-Next Generation. The full sample consists of non-R&D definitive contracts and purchase orders, with
award values between $ 5,000 and $ 45,000, awarded by the Department of Defense in fiscal years 2011 through 2017. Panel (a)
restricts the sample to awards made by the Army. Panel (b) restricts the sample to awards made by the Navy. Panel (c) restricts
the sample to awards made by the Air Force. Award amounts are discretized into right-inclusive bins of $2,500 dollars length.
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Figure A16: Heterogeneous publicity adoption: goods versus services
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Notes: This figure presents two binned scatter plots, which depict the share of publicized contracts by bins of award amounts, as
well as linear and quadratic fits at each side of $25,000. The data source is the Federal Procurement Data System-Next Generation.
The full sample consists of non-R&D definitive contracts and purchase orders, with award values between $ 10,000 and $ 40,000,
awarded by the Department of Defense in fiscal years 2015 through 2019. Panel (a) restricts the sample to awards for goods,
while Panel (b) restricts the sample to service contracts. Award amounts are discretized into right-inclusive bins of $3,000 dollars
length.

Figure A17: Heterogeneous effects on competition: goods versus services
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Notes: This figure presents two binned scatter plots, which depict the average number of offers received by bins of award
amounts, as well as linear and quadratic fits at each side of $25,000. The data source is the Federal Procurement Data System-Next
Generation. The full sample consists of non-R&D definitive contracts and purchase orders, with award values between $ 10,000
and $ 40,000, awarded by the Department of Defense in fiscal years 2015 through 2019. Panel (a) restricts the sample to awards
for goods, while Panel (b) restricts the sample to service contracts. Award amounts are discretized into right-inclusive bins of
$3,000 dollars length.
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Figure A18: Heterogeneous effects on winner characteristics: goods versus services
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Notes: This figure presents two binned scatter plots, which depict the share of contracts awarded to a foreign firm by bins of award
amounts, as well as linear and quadratic fits at each side of $25,000. The data source is the Federal Procurement Data System-Next
Generation. The full sample consists of non-R&D definitive contracts and purchase orders, with award values between $ 10,000
and $ 40,000, awarded by the Department of Defense in fiscal years 2015 through 2019. Panel (a) restricts the sample to awards
for goods, while Panel (b) restricts the sample to service contracts. Award amounts are discretized into right-inclusive bins of
$2,500 dollars length.

Figure A19: Heterogeneous effects on performance: goods versus services
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Notes: This figure presents two binned scatter plots, which depict share of contracts with cost overruns by bins of award amounts,
as well as linear and quadratic fits at each side of $25,000. Cost overruns are computed as the difference between actual obligated
contract dollars and expected total obligations at the time of the award, divided by expected obligations. The data source is
the Federal Procurement Data System-Next Generation. The full sample consists of non-R&D definitive contracts and purchase
orders, with award values between $ 10,000 and $ 40,000, awarded by the Department of Defense in fiscal years 2015 through
2019. Panel (a) restricts the sample to awards for goods, while Panel (b) restricts the sample to service contracts. Award amounts
are discretized into right-inclusive bins of $3,000 dollars length.
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B Additional Tables

Table B.1: Summary Statistics

Mean
Panel A: Contracting Office

Navy 0.378
Army 0.441
Air Force 0.150
Other 0.031

Panel B: Contract Characteristics

Award Amount (dollars) 20,807
Expected Duration (days) 54.10
Fixed-Price Contract 0.999
Set Aside Award 0.571
Simplified Procedure 0.971
Publicized on FedBizzOpps 0.299

Panel C: Contract Competition

Number of Offers 3.542
One Offer 0.239

Panel D: Contractor Characteristics

Foreign 0.099
Within-State Firm 0.690
Small Business 0.752
Women-Owned Business 0.188

Panel E: Contract Execution

Number of Modifications 0.439
Any Modifications 0.274
Cost-Overruns (Relative to Award Value) 0.076
Any Cost-Overruns 0.094
Delays (Relative to Expected Duration) 0.125
Any Delays 0.104

Sample Size

No. of Contracts 85,661
No. of Contracting Offices 597
No. of Awarded Firms 29,641

Notes: This table presents summary statistics. The data source is the Federal Procurement Data System-Next Generation.
The sample consists of non-R&D definitive contracts and purchase orders, with award values between $ 10,000 and $
40,000, awarded by the Department of Defense in fiscal years 2015 through 2019. An observation is a contract, defined by
aggregating all contract actions (initial award, modification, termination, etc.) associated with the same contract ID.
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Table B.2: Top Product and Service Categories

Goods Services
Rank Name N Contracts/year Name N Contracts/year
1 ADP Equipment and Software 3,005 Maintenance/Repair of Equipment 2,430
2 Medical Equipment and Supplies 2,998 Support Services (Professional) 1,187
3 Laboratory Equipment 1,643 Utilities And Housekeeping 1,096
4 Electrical Equipment Compontents 1,593 Transport, Travel, Relocation 854
5 Communication/Coherent Radiation 1,202 ADP and Telecommunications 806
6 Furniture 810 Lease/Rent Equipment 753
7 Power Distribution Equipment 697 Maintenance of Real Property 688
8 Ship And Marine Equipment 574 Education And Training 560
9 Hardware And Abrasives 530 Construct Of Structures/Facilities 335
10 Construction And Building Material 459 Social Services 286

Notes: This table presents average annual counts of contracts in the most common product categories. The data source
is the Federal Procurement Data System-Next Generation. The sample consists of non-R&D definitive contracts and
purchase orders, with award values between $ 10,000 and $ 40,000, awarded by the Department of Defense in fiscal years
2015 through 2019. An observation is a contract, defined by aggregating all contract actions (initial award, modification,
termination, etc.) associated with the same contract ID. A 4-digit alphanumeric code (PSC) is observed for each contract.
The categories listed are constructed by aggregating PSC codes to two-digits for goods, and to a single digit (letter) for
services.

Table B.3: Estimated Price Effect

Estimate / Sample All Goods Services
Complexity

Q1 Q2 Q3 Q4
(1) (2) (3) (4) (5) (6) (7)

Mean (µγ) 0.0595 0.0498 0.0782 0.0397 0.0505 0.0510 0.0962
(0.0201) (0.0622) (0.0596) (0.0475) (0.1692) (0.1908) (0.0920)

Standard 0.0643 0.0670 0.0534 0.0669 0.0739 0.0680 0.0369
Deviation (σγ) (0.0075) (0.0084) (0.0202) (0.0140) (0.0760) (0.0295) (0.0280)

Notes: This table shows the estimates corresponding to the effect of publicity on contract prices. The estimates result from
analyzing the observed contract price density distribution relative to a counterfactual distribution. The observed densities
are generated using bins of width $250. The counterfactual distribution stems from a polynomial interpolation of degree 5.
The standard deviation is calculated over the non-parametric distribution of γ. The standard errors are calculated through
bootstrap. The subgroup analysis is performed independently for each group.
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Table B.4: Reduced-form RDD: Baseline and “Donut-RD” specifications

Dependent Variable
Baseline Donut-RD with Varying Window Size

OLS $500 $1000 $1500 $2000 $2500 $3000
(1) (2) (3) (4) (5) (6) (7)

Number of offers 0.3569 0.3139 0.2887 0.2789 0.2703 0.3020 0.2708
(0.0677) (0.0709) (0.0734) (0.0760) (0.0788) (0.0819) (0.0854)

Log distance firm-office 0.1392 0.1619 0.1508 0.1608 0.1663 0.1447 0.1497
(0.0481) (0.0502) (0.0519) (0.0536) (0.0557) (0.0578) (0.0601)

Small business -0.0277 -0.0260 -0.0251 -0.0289 -0.0325 -0.0286 -0.0278
(0.0065) (0.0068) (0.0070) (0.0072) (0.0075) (0.0078) (0.0081)

Any cost-overrun 0.0135 0.0090 0.0094 0.0101 0.0113 0.0099 0.0097
(0.0045) (0.0047) (0.0048) (0.0050) (0.0052) (0.0054) (0.0056)

Any delay 0.0130 0.0067 0.0085 0.0114 0.0146 0.0137 0.0138
(0.0047) (0.0049) (0.0051) (0.0052) (0.0054) (0.0056) (0.0058)

Number of modifications 0.0375 0.0211 0.0208 0.0278 0.0347 0.0282 0.0254
(0.0173) (0.0181) (0.0187) (0.0193) (0.0201) (0.0208) (0.0216)

Notes: This table shows Regression Discontinuity Design (RDD) estimates of the reduced-form relationship between a
series of outcome variables and an indicator of whether a contract award price exceeds $25,000. Each estimate comes from
a separate regression. Coefficients in column (1) use a linear fit above and below the discontinuity, and are identical to the
corresponding estimates in the first column of Table 1. Coefficients in columns (2) through (7) use the same specification,
but drop observations with a contract award value within a window of varying length around the $25,000 threshold. For
example, column (3) drops contract awards between $24,500 and $25,500. Standard errors are shown in parentheses.
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Table B.5: Complexity Measure: Top and Bottom Products

Rank Product Category Complexity
Top 10

1 Fuel Oils 0.000
2 Food, Oils and Fats 0.000
3 Tool and Hardware Boxes 0.000
4 Composite Food Packages 0.000
5 Surgical Dressing Materials 0.000
6 Medical and Surgical Instruments, Equipment, and Supplies 0.000
7 Meat, Poultry, and Fish 0.000
8 Games, Toys, and Wheeled Goods 0.000
9 Ophthalmic Instruments, Equipment, and Supplies 0.000
10 Miscellaneous Fire Control Equipment 0.000

Bottom 10
10 IT and Telecom- Internet 0.411
9 Medical, Dental, and Veterinary Equipment and Supplies 0.418
8 Laundry/Drycleaning 0.471
7 Lease of Office Machines, and Text Processing Systems 0.479
6 Trash/Garbage Collection 0.516
5 Insect/Rodent Control 0.618
4 Landscaping/Groundskeeping 0.628
3 Snow Removal/Salt 0.765
2 Custodial Janitorial 0.860
1 Operation Of Recreation Facilities - Non-Building 0.943

Notes: This table presents the top and bottom 10 product categories in terms of complexity index. The data source is
the Federal Procurement Data System-Next Generation. The complexity index is calculated using non-R&D definitive
contracts and purchase orders, with award values between $ 5,000 and $ 20,000, awarded by the Department of Defense
in fiscal years 2015 through 2019. The complexity index is defined as the average cost overruns at the product or service
category (PSC) level. Cost overruns are defined as the final contract price including all modifications, minus the award
price, divided by the award price. PSCs correspond to a 4-digit alphanumeric code that is observed for each contract.

Table B.6: Summary Statitistics: Local vs. Non-Local Contractors

Local Non-Local Diff
log Distance 3.471 4.554 -1.083
Located in the Same State 0.695 0.501 0.194
Overruns 0.078 0.236 -0.158
Delays 0.130 0.275 -0.145
Number of Modifications 0.548 0.880 -0.332

Notes: This table presents summary statistics for distance and execution variables for contracts
performed by local and non-local contractors. The sample includes contracts between 10,000
and 40,000 dollars, and buyer-product combinations that appeared at least four times between
2013 and 2019. The need for observing multiple buyer-product observations stems from the
way we categorize these contractors. The variables “Overruns” and “Delays” are measured
relative to dollars obligated and duration at the time of the award, respectively. The differences
between the first two columnds are all statistically significant at the 1% level.
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Table B.7: Model Estimation Sample Versus Full Sample

Model Full
Sample Sample Diff

Variables:
Publicized in FBO 0.373 0.274 0.099
Award Amount 21.178 20.627 0.551
Number of Offers 3.002 3.098 -0.096
Overruns (relative) 0.117 0.088 0.029
Service 0.375 0.308 0.067
Mean Overruns Prod Cat 0.089 0.071 0.018
Awarded in September 0.249 0.262 -0.013
log Duration 3.976 3.811 0.165

Bidders’ Classification
Local is Awarded 0.754 - -
N Potential Local Bidders 6.078 - -
N Potential Non-Local Bidders 3.339 - -

Number of Observations 24,135 103,899

Notes: This table compares the sample use in the estimation of the model, compared with the full sample of
contracts used in the reduced-form analysis. The first column shows the mean of selected variables using the
model estimation sample. The second column shows the same means, but computed over the full sample.
The third column shows the differences between these two means. The model estimation sample corresponds
to the subset of contracts for which we could identify the number of potential local and non-local bidders.
We restrict the analysis to buyer-product combinations that meet two conditions: at least four contracts were
awarded between 2013 and 2019, and neither all nor none were publicized.
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Table B.8: Estimated Parameters of Entry, Bidding and Execution

Entry Bid Distribution Execution
(Probit) (Log Normal) (Log Normal)

x̄ Coeff S.E. Coeff S.E. Coeff S.E.
Panel A: Coefficients
Constant 0.0048 ( 0.00057 ) 3.0517 ( 0.00025 ) -1.7041 ( 0.00038 )
Service 0.375 -0.0598 ( 0.00014 ) 0.0000 ( 0.00030 ) 0.0751 ( 0.00026 )
Degree of Complexity 0.089 -0.7367 ( 0.00071 ) -0.0005 ( 0.00037 ) 1.6284 ( 0.00066 )
Non-Local 2.1651 ( 0.00040 ) -0.0402 ( 0.00037 ) 0.2354 ( 0.00069 )
Non-Local×Complexity 0.0299 ( 0.00026 ) -0.0308 ( 0.00063 ) 0.0868 ( 0.00082 )
Last Month 0.249 -0.8826 ( 0.00077 )
Exp. Duration > Median 0.5 0.1273 ( 0.00025 )
NL 6.078 0.0002 ( 0.00010 ) -0.0023 ( 0.00027 )
NNL 3.339 -0.1876 ( 0.00028 ) 0.0099 ( 0.00024 )

Panel B: Standard Deviation
Constant -2.6132 ( 0.00081 ) -0.4102 ( 0.00048 )
Service 0.0996 ( 0.00031 ) 1.1854 ( 0.00048 )

S.D. Unob. Het. (σu) 2.1683 ( 0.00087 )

Panel C: Buyer Preferences
Publicity Choice

(Probit)
Constant -0.2584 ( 0.00059 )
Exp. Price (λP) -0.6361 ( 0.00043 )
Exp. Cost-Overruns (λQ) -0.2457 ( 0.00058 )
Exp. Local Winning (λL) 0.5879 ( 0.00069 )
Above $25K 0.8542 ( 0.00037 )

Number of Obs. 24,135

Notes: This table displays estimated coefficients and their corresponding standard errors obtained with the model. Panel A
describes the coefficients associated with key covariates on the three model stages that concern bidders: entry probability,
mean of (log) bids, and mean of (log) execution shocks. Covariates are listed in the first column and their sample mean
is listed in column two. Panel B displays the estimates associated with the standard deviation of (log) bids, unobserved
heterogeneity, and (log) cost-overruns. Panel C shows the coefficients associated with the publicity choice by the buyer.
Agency and year fixed effects are omitted in this table. These coefficients are estimated jointly using Simulated Method of
Moments (SMM). Log-bids and the log of the unobserved project heterogeneity are assumed to be normally distributed.
The entry and publicity choices are modelled as a Probit. The standard deviation of log-bids and log-overruns shocks are
estimated as σ = exp(b0 + b11(Service)), where 1(Service) indicates a contract for a service.
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C Additional Details on the Setting

C.1 FedBizzOpps

FedBizOpps.gov (FBO) has been designed as a single government point of entry (GPE) for Federal

buyers to publish and for vendors to find posted Federal business opportunities across departments

and agencies. The FAR (part 5) regulates the publicity of contract actions. The goals of publicity

policy (FAR 5.002) are (a) increase competition, (b) broaden industry participation in meeting Govt

requirements (c) assist small businesses (and VO, VOSD, WO, HUBZone, etc.) in winning contracts

and subcontracts. The FAR requires that contract actions expected to exceed $25,000 must be

synopsized in the GPE. Contract actions under $25,000 must publicize “by displaying in a public

place, or by any appropriate electronic means.” The contracting officer is exempted to advertise

in GPE (FAR 5.102(a)5 and 5.202), when “disclosure compromises national security, ” “nature of

the file (e.g., size) does not make it cost-effective or practicable,” the “agency’s senior procurement

executive makes a written determination that it is not in the Government’s interest,” and several

other special cases (see FAR 5.202).

Figure A2 displays screenshots to the website. Panel (a) shows the list of opportunities, Panel

(b) includes the information contained a specific solicitation :

C.1.1 Types of FBO Notices

There are two broad types of FBO notices: pre-award and post-award notices. The pre-award notices

are divided into four actions:52

• Presolicitation: The pre-solicitation notice makes vendors aware that a solicitation may

follow. Vendors may add themselves to the Interested Vendors List, if the posting agency has

enabled this feature. This helps government agencies determine if there are qualified vendors

to perform the work scope and allows the contracting office to gather information on the

interested vendors.

• Combined Synopsis/Solicitation: Most opportunities classified this way are open for bids

from eligible vendors. These opportunities include specifications for the product or service

requested and a due date for the proposal. The notice will specify bidding procedures in the

details of the solicitation.

• Sources Sought: The Sources Sought notice is a synopsis posted by a government agency

seeking possible sources for a project. It is not a solicitation for work or a request for proposal.

For more information, see FAR 7.3 and OMB Circular A-76.
52Here we omit uncommonly used actions: Sale of Surplus Property, Justification and Approval (J&A), Fair Opportunity /

Limited Sources Justification, Foreign Government Standard, and Intent to Bundle Requirements (DoD-Funded).
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• Special Notice: Agencies use Special Notices to announce events like business fairs,

long-range procurement estimates, pre-bid/pre-proposal conferences, meetings, and the

availability of draft solicitations or draft specifications for review.

The post-award notices are essentially award notices:

• Award Notice: When a federal agency awards a contract in response to a solicitation, they

may choose to upload a notice of the award to allow the interested vendors to view the vendor

receiving the awarded contract, and amount agreed upon.

Figure A1 describes the life-cycle of a project and how different stages are linked to FBO actions.

C.2 Dataset Details

Our analysis combines data from two sources: Federal Procurement Data System - Next Generation

(FPDS-NG) and data scrapped directly from FedBizzOpps.gov (FBO).

FPDS-NG. The FPDS-NG tracks the universe of federal awards that exceed $5,000.53 The Federal

Acquisition Regulation (FAR) requires Contracting Officers (COs) must submit complete reports on

all contract actions. Thus, every observation corresponds to a contract action, representing either an

initial award or a follow-on action, e.g., modification, termination, renewal, or exercise of options.

For each observation, we observe detailed information, such as the dollar value of the funds

obligated by the transaction; a four-digit product category code (PSC); six-digit Industry (NAICS)

code; identification codes for the agency, sub-agency, and contracting office making the purchase;

the identity of the private vendor (DUNS); the type of contract pricing (typically, fixed-price or

cost-plus); the extent of competition for the award; characteristics of the solicitation procedure; the

number of offers received; and the applicability of a variety of laws and statutes. We collapse all

actions by contract ID. As a reference, 80% of awarded contracts are smaller than $50, 000.

Our analysis contemplates overruns in terms of cost and time of completion. We define contract

delays and cost overruns based on related literature (Decarolis et al., 2020). We exclude outliers

on both variables as they are likely associated with data entry issues. We cross-checked dates

and amounts for contract award notices that appeared in FBO and found that mismatches are

uncommon.

FBO Data. We use daily archives of all information posted in FBO. Every data row corresponds to a

different notice action. Each action is associated with a unique URL. The two primary IDs to match

FBO data with other datasets are “solicitation number” and “contract award number. The former

identifies pre-award actions, whereas award notices are identified using “contract award number.”

A relevant fraction of the award-notices are not linked with any of the pre-award notices. FPDS

data contain both IDs. Roughly, an annual database contains 300,000 notices.

53The data can be downloaded from usaspending.gov
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The data preparation consists in three steps; first, we clean IDs and classify different actions

associated with each ID. Second, we merge with FPDS data using contract number, then update

solicitation number when both exist, finally merge and append unmatched observations using

solicitation number. The last step is to collapse the data at the FPDS contract ID level. So the

resulting dataset contains all the contract ids that also appeared in FBO.

We define that a contract appeared in FBO (treatment indicator) if the contract award has a

solicitation number associated with at least one of the FBO pre-award actions described above.
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D Empirical Framework for Estimating the Effects of Publicity on

Contract Outcomes

This Section presents a detailed exposition of the empirical framework introduced in Section 3.

Section D.1 presents our theoretical framework and the set of results that motivate the density

analysis. Section D.1.5 explains the density analysis in detail, including all implementation details.

Section D.1.6 discusses how to correct naive RDD estimates to account for price effects and potential

measurement error. Section D.1.8 explains how we account for potential bunching responses in the

RDD framework.

D.1 Empirical Model

D.1.1 Preliminaries

Consider a series of observed contract awards t ∈ {1, .., T}. Let p̃t be the ex-ante award price of

contract t, which corresponds to the agency’s estimate of what the contract price will be. Let pt

be the observed award price of contract t. p̃t and pt are normalized relative to a policy threshold of

$25,000 and measured in logs. Therefore, negative (positive) values of p̃t and pt are said to be below

(above) the threshold for the purpose of the policy described below.

Prior to the award, the buyer decides whether to publicize the solicitation (Dt = 1) or not (Dt =

0). Let pd
t ( p̃t) be the potential price that we would observe for contract t, given an ex-ante estimate

of p̃t and a publicity decision Dt = d, for d ∈ {0, 1}. There is a policy that encourages buyers to

choose Dt = 1 for awards expected to exceed the threshold (i.e. for p̃t > 0).

The buyer may choose to strategically bunch (Bt = 1), which means that she modifies the

characteristics of the initial purchase, in order to obtain an award price equal to pB
t ( p̃t), choosing

Dt = 0 without being affected by the policy. pB
t ( p̃t) is equal to, or slightly below 0.

Therefore, observed prices can be written as:

pt = p0
t ( p̃t) + Dt ·

[
p1

t ( p̃t)− p0
t ( p̃t)

]
+ Bt · (1− Dt) ·

[
pB

t ( p̃t)− p0
t ( p̃t)

]
We assume the following:

A1 p̃t are i.i.d. draws from a distribution with smooth density f p̃(·).

A2 p0
t ( p̃t) = p̃t + ξt, with ξt ∼ Fξ(·), E[ξt] = 0, and ξt ⊥ p̃t.

A3 p1
t ( p̃t) = p̃t + γt, with γt ∼ Fγ(·), γt ⊥ p̃t, and γt ⊥ ξt.

A4 Pr(Dt = 1| p̃t) ≡ π̃D( p̃t) = π̃∗D( p̃t) + δ · 1[ p̃t > 0], for a continuous function π̃∗D(·).

A5 There exist pH > 0 such that Bt = 0 for all p̃t > pH.
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Note that here we present a slightly more general version of the model that in Section 3. In

particular, A2 allows for measurement error in agencies’ ex-ante estimates.

D.1.2 Discretizing award values

Consider the division of the range of possible (normalized) award values into a set of equally-sized

and right-inclusive bins around the threshold b ∈ {−R, (−R + 1), ...,−1, 0, 1, ..., (R− 1), R}. Note

that bin b = 0 includes awards right at, or slightly below, the policy threshold.

Let {nd
b}R

b=−R be the frequency distribution of observed awards conditional on treatment

(publicity) status Dt = d, for d ∈ {0, 1}, so that nd
b denotes the number of contracts with treatment

status d and observed award value pt ∈ b. Likewise, let {ñd
b}R

b=−R represent the (unobserved)

frequency distribution of latent ex-ante prices. We also denote the distribution of all awards (both

publicized and non-publicized) by simply omitting the superscript. That is, nb = n0
b + n1

b, and

ñb = ñ0
b + ñ1

b.

Consider also a shifted distribution of publicized contracts {n1,s
b (γ̄)}R

b=−R, which is obtained by

subtracting a mean price effect γ̄ to every publicized (Dt = 0) contract. That is, n1,s
b (γ̄) denotes the

number of publicized contracts with award value pt such that (pt + γ̄) ∈ b.

Finally, let ∆ denote the discrete change in the number of publicized contracts at the

discontinuity. Given A4, note that this is defined as ∆ = δ ·∑b nb.

D.1.3 Propositions

We now make a series of propositions that motivate our estimation method that we label “density

analysis” in Section 3.

Proposition 1. There exist some (b1, b̄1) such that E[ñ1
b] = E[ns,1

b (γ̄)], for γ̄ = E[γt], b < b1 < 0 and

b > b̄1 > 0. That is, far enough from the threshold, the distribution of realized award prices, appropriately

shifted to cancel out mean price effects, coincides with the distribution of ex-ante award prices for publicized

contracts.

Proposition 2. There exist some (b0, b̄0) such that E[ñ0
b] = E[n0

b], for b < b0 < 0, and b > b̄0 > 0.

In other words, far enough from the threshold, the distributions of ex-ante and realized award prices for

non-publicized contracts coincide.

Corollary 1. E[ñb] = E[n0
b + ns,1

b (γ̄)], for γ̄ = E[γt], b < b = min{b0, b1} < 0 and b > b̄ =

max{b̄0, b̄1} > 0.

Proposition 3. ∑b≤0(ñb − nb) = ∑b>0(nb − ñb). This means that the excess mass below the threshold

equals the missing mass above the threshold.

Proposition 4. ∆ · Fγ′(x) = E[n1,s
bx
(γ̄)− ñ1

bx
], for x ∈ bx, bx ≤ 0, and γ′ = γ− γ̄.
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D.1.4 Convolution of densities

The key to our propositions stems from characterizing the distribution of observed prices pt,

given the distributions of ex-ante estimates, price effects, and measurement error. Throughout

this section, we normalize the price of publicized contracts by subtracting the mean of the price

effects. This is for convenience, so that we deal with a mean-zero price effect, but is without loss of

generality, as the propositions appropriately adjust for γ̄ when appropriate.

Consider first the density of publicized contracts, h1
p. Because observed prices are given by

the sum of two independent random variables, ex-ante estimates and price effects (see A3), their

density is given by the convolution of the densities f 1
p̃ ≡ f p̃|D=1 and fγ. That is:

h1
p(pt) =

∫ ∞

−∞
f 1
p̃(pt − γt) fγ(γ)dγ (8)

On the other hand, using Bayes’ rule:

f 1
p̃( p̃t) =

π̃D( p̃t) · f p̃( p̃t)

Pr(Dt = 1)
(9)

So that (8) and (9) imply:

h1
p(pt) =

∫ ∞

−∞

π̃D(pt − γ) · f p̃(pt − γ) · fγ(γ)

Pr(Dt = 1)
dγ

=
∫ ∞

−∞

(π̃∗D(pt − γ) + δ · 1[pt − γ > 0]) · f p̃(pt − γ) · fγ(γ)

Pr(Dt = 1)
dγ

=
∫ ∞

−∞

π̃∗D(pt − γ) · f p̃(pt − γ) · fγ(γ)

Pr(Dt = 1)
dγ +

∫ pt

−∞

δ · f p̃(pt − γ) · fγ(γ)

Pr(Dt = 1)
dγ

Or,

h1
p(pt) ≡

∫ ∞

−∞
f 1∗
p̃ (pt − γ) · fγ(γ) · dγ +

∫ pt

−∞
∆(pt − γ) · fγ(γ) · dγ (10)

Consider pt << 0, so that fγ(pt) ≈ 0. In words, consider a price sufficiently below the

threshold, so that the probability that the ex-ante estimate for this contract was above the threshold

is negligible. In this case, the second term in Equation (10) is zero. On the other hand, f 1∗
p̃ (pt− γ) =

f 1
p̃(pt− γ) when pt < 0, so that the first term is the convolution between the densities of p̃ and γt. If

the former is sufficiently smooth, then adding a mean-zero price effect has no effect on the observed

density, and h1
p(pt) = f 1

p̃(pt). It follows that the expected number of contracts with observed price

pt equals the expected number of contracts with ex-ante price estimate equal to pt. Abandoning the

normalization to allow for non-zero average price effects implies that this equality of expectations

holds only once observed publicized prices are adjusted by adding the mean of γ. The first part of

Proposition 1 follows: for sufficiently low pt ∈ b, E[ñ1
b] = E[ns,1

b (γ̄)], for all b ≤ b.
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As we move closer to the threshold from below, the second term in Equation (10) becomes

positive. This corresponds to the excess mass of contracts, relative to the counterfactual density

of the first term. Intuitively, this term is given by the mass of contracts with ex-ante estimate to the

right of the threshold that receive a sufficiently high price effect so as to end up at the left of it. This

is what allows us to identify Fγ in Proposition 4. Consider pt = x closely below the threshold, so

that ∆(x− γ) ≈ ∆. With a constant ∆, it immediately follows that ∆ · Fγ(pt) = h1
p(pt)− f 1

p̃(pt).

A symmetric argument can be given for pt closely above the threshold. In this case, the second

term becomes the missing mass of the observed density h1
p(pt), relative to the counterfactual density

of p̃. Once we get to a high enough value of pt >> 0, once again fγ(pt) goes to zero and this missing

mass disappears. Observed and counterfactual densities converge, which completes Proposition 1:

for sufficiently high pt ∈ b, E[ñ1
b] = E[ns,1

b (γ̄)], for all b > b.

The argument for non-publicized contracts is directly analogous. Observed awards are the sum

of unobserved ex-ante estimates p̃ and a mean-zero error term ξ. This error term only generates a

discrepancy between h0
p and f 0

p when the latter is not smooth, which happens only at the threshold.

Proposition 2 follows: for pt << 0 and pt >> 0, the two densities coincide.

All this discussion ignored the potential effect of bunching responses. However, strategic

bunching does not affect any of the aforementioned results. This is because of A5: bunching

responses occur only within a window around the threshold. Therefore, all of our arguments

remain unchanged, as long as bH ≤ b, where pH ∈ bH.

Finally, Proposition 3 follows directly from the fact that our model assumes no extensive margin

responses. Contracting officers can avoid the mandate via bunching responses, but still need to

complete the purchase. We think this assumption is natural for this setting, so that the overall

number of observed and counterfactual contracts needs to coincide.

D.1.5 Density Analysis: Estimation of Price Effects and Counterfactual Densities

We know explain our density analysis estimation method in detail, building on the Propositions of

the previous section.

Step 1

Our method starts from the observation that, relative to ex-ante prices, linear price effects will

impact the distribution of publicized contracts in two ways: (i) they will shift the full distribution

to the left by E[γt]; and (ii) they will smooth out the discontinuity in the distribution around the

threshold, because of V(γt) (see Figure A20 (d)).

Suppose that we knew the true value of mean price effects E[γt] ≡ γ̄. From the observed

frequency distribution of publicized contracts {n1
b}, we can simply undo the first impact of price
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Figure A20: Impact of Bunching and Price Effects on Award Distributions

(a) Bunching for D = 0

p̃, p

Number of

p̄

contracts

Ex-ante

Bunching

(b) Bunching for D = 1

p̃, p

Number of

p̄

contracts Ex-ante

Bunching

(c) Bunching + Price Effects for D = 0

p̃, p

Number of

p̄

contracts

Ex-ante Bunching, Price effects

(d) Bunching + Price Effects for D = 1

p̃, p

Number of

p̄

contracts Ex-ante
Bunching

Price effects

Notes: This figure shows conceptually how the distributions of non-publicized and publicized awards are impacted by the
existence of both strategic bunching responses and price effects due to increased competition. Panels (a) and (b) show, respectively
for non-publicized and publicized contracts, the distributions of ex-ante award prices (p̃, in dashed black lines), as well as realized
award prices (p, in solid orange and green lines) when we allow for strategic bunching responses. Panels (c) and (d) plot the
additional effect of having price effects associated with publicity (in solid red lines).
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effects by shifting this distribution back to the right. That is, we construct the shifted distribution

{n1,s
b (γ̄)}, which is obtained by adding the value of γ̄ to the price award of every publicized

contract. If the number of contracts is large, the shifted distribution should coincide with the

unobserved distribution of ex-ante prices {ñd
b}, except near the threshold.

On the other hand, a similar argument can be made for non-publicized contracts, given the

assumption that bunching responses are local to the threshold (A4). Except for a window around

the threshold where bunching responses manifest, the observed distribution {n0
b} should coincide

with the unobserved distribution {ñd
b} (see Figure A20 (c)).

This intuition is supported by Propositions 1 and 2. Once we get “far enough” from the

threshold, the distribution of non-publicized awards and the appropriately shifted distribution

of publicly solicited awards should coincide with the latent distributions of ex-ante prices. In

particular, we have that: n0
b + n1,s

b (γ̄) ≈ ñ0
b + ñ1

b = ñb for b sufficiently far from 0. On the contrary,

close to the threshold we have n0
b + n1,s

b (γ̄) 6= ñb due to the effects of bunching and the variance in

price effects.

Finally, because we know that the unobserved distribution {ñb} should be smooth everywhere

due to A1, we can use a standard bunching estimation procedure (Chetty et al., 2013; Kleven and

Waseem, 2013) to infer the shape of it around the threshold. This means fitting a polynomial

function through our constructed distribution {n0
b + n1,s

b (γ̄)}, ignoring the contribution of the bins

close to the threshold.

More concretely, we estimate the following specification:

[
n0

b + n1,s
b (̂̄γ)] = Q

∑
x=0

αx · bx +
b

∑
j=b

γj · 1[b = j] + νb, for b = {−R, ..., R} (11)

and obtain fitted values:

n̂b =
Q

∑
x=0

α̂x · bx for b = {−R, ..., R}.

Now, this discussion started by assuming that we knew the value of the mean price effect γ̄. Yet,

in practice, this is the main unknown parameter that we seek to recover. So in order to estimate

it, we rely on the integration constraint of Proposition 3: ∑R
b=−R(n

0
b + n1,s

b (γ̄)) = ∑R
b=−R

̂̃nb. As

the intuition from Figure A21 shows, the integration constraints will bind only when we shift the

distribution of publicized contracts according to the right value of γ̄. We, therefore, start from an

initial guess of ̂̄γ, and iterate until we find a value such that the constraint is satisfied.
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Figure A21: Intuition of Method to Estimate Mean Price Effects

(a) By publicity status, ̂̄γ = E[γ]
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(b) All contracts, ̂̄γ = E[γ]
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(c) By publicity status, ̂̄γ > E[γ]
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(d) All contracts, ̂̄γ > E[γ]
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(e) By publicity status, ̂̄γ < E[γ]
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Notes: This figure provides (graphical) intuition of the procedure to estimate the mean price effect based on the integration
constraint condition, i.e., the sum of excess of mass below the threshold equals the sum of missing masses above the threshold.
Panels (a), (c), and (e) display distributions of publicized and non-publicized contracts. Panels (b), (d), and (f) show the
corresponding overall distributions, i.e., the blue line in panel (b) corresponds to the sum of the yellow and red lines in panel (a).
The key intuition is that the integration constraint condition is only met if the distribution of publicized contracts is re-centered
by the correct mean of price effect, i.e., the resulting distribution has mean zero.
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For the implementation, we choose the following parameters. We use a fifth-degree polynomial,

i.e. Q = 5. We use bins of constant width of 0.01 log-points. This implies bins of roughly $250 at the

discontinuity. Indeed, bin b = 0 includes all contracts with price greater than $24,75154 and smaller

than or equal to $25,000. Our estimation is performed on a total set of 150 bins centered around

zero, from -0.75 to 0.75. In dollar terms, this corresponds to contracts between $11,809 and $52,925.

The excluded window for step 1 is symmetric, excluding 12 bins below zero and 12 bins above. In

dollar terms, the excluded window consists of contracts between $22,173 and $28,187.

Step 2

The second step seeks to estimate separate counterfactual distributions by publicity status, i.e.

{ ̂̃n0
b} and { ̂̃n1

b}. To do this, we can go back to the intuition from Figure A20, assuming that there

are neither price effects nor bunching responses, so that the distributions of ex-ante prices and

observed realized prices coincide. In this case, the distributions for treated and control units should

be continuous, except at the threshold, where we should see a discontinuous jump in publicized

contracts mirrored by a discontinuous dip in non-publicized contracts. Suppose that we knew

the size of this change, which we denote as ∆. Knowledge of ∆ would allow us to undo these

discontinuities by shifting the right part of each distribution vertically. Indeed, the distributions

{n0
b + ∆ · 1[b > 0]} and {n1

b − ∆ · 1[b > 0]} should be continuous.

In the presence of bunching and price effects, these vertical shifts will not make the observed

distributions continuous. However, just as in the discussion above, price effects and bunching

should only affect the distributions within some window around the threshold. So we use this logic

again and use a polynomial interpolation to estimate the counterfactual distributions around the

threshold.

First, we construct distributions that are vertically shifted above the threshold: {n0
b + ∆ · 1[b >

0]}R
b=−R and {n1,s

b ( ̂̄γb)− ∆ · 1[b > 0]}R
b=−R. We then apply the same interpolation method as before

for each of the two distributions. That is, we separately estimate the following two specifications:

(
n0

b + ∆ · 1[b > 0]
)
=

Q

∑
x=0

α0
x · bx +

b0

∑
j=b0

γ0
j · 1[b = j] + ν0

b , for b = {−R, ..., R} (12)

(
n1,s

b ( ̂̄γb)− ∆ · 1[b > 0]
)
=

Q

∑
x=0

α1
x · bx +

b1

∑
j=b1

γ1
j · 1[b = j] + ν1

b , for b = {−R, ..., R} (13)

and compute fitted values ignoring the contribution of the bins within the excluded window:

n̂∗0b =
Q

∑
x=0

α̂0
x · bx, for b = {−R, ..., R}

54log(x)− log(25, 000) = 0.01 ⇐⇒ x = 25, 000 · exp(−0.01)
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n̂∗1b =
Q

∑
x=0

α̂1
x · bx, for b = {−R, ..., R}

Finally, our estimates of the counterfactual distributions do incorporate the discontinuous effect

of the policy. We estimate these by re-adding the shift that we originally removed:

n̂0
b = n̂∗0b − ∆ · 1[b > 0] for b = {−R, ..., R}

n̂1
b = n̂∗1b + ∆ · 1[b > 0] for b = {−R, ..., R}

Again, this exposition assumes that we know the value of ∆. Since, in practice, this is not directly

observed, our method iterates over guesses of ∆̂. The convergence criterion in this case is based on

the fit of the interpolations outside the excluded window. Indeed, if the vertical shift we guess is

too low or too high, the polynomial interpolation will fit poorly just outside of the excluded area.

Figure A22 shows this intuition graphically.

So, given a guess of ∆̂, we compute the residuals for each of the two regressions (12) and (13).

We then search over ∆̂ to minimize:

W
(

∆̂
)
= 0.5 · ∑

b 6=Z0

ν̂0
b

(
∆̂
)2

+ 0.5 · ∑
b 6=Z1

ν̂1
b

(
∆̂
)2

,

where Z0 = {b0, ..., b0} and Z1 = {b1, ..., b1} correspond to the excluded regions.

For step two, we keep the polynomial degree fixed, binning and range fixed as in step 1.

However, we change the excluded region for the specification using non-publicized contracts (12).

The justification of this is that we expect bunching to be concentrated closely below the threshold.

Concretely, we choose 5 bins below the threshold and 12 bins above for Z0 and keep the symmetric

window of 12 bins above and below for Z1.
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Figure A22: Intuition of Method to Estimate Ex-Ante Price Distributions
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Notes: This figure provides (graphical) intuition of the procedure to estimate the ex-ante price distribution. The method considers
identifying the discrete change in the distribution of publicized contracts (∆) that matches with the drop in the distribution of
non-publicized contracts. Panels (a), (c), and (e) display distributions of non-publicized contracts. Panels (b), (d), and (f) show
the distributions of publicized contracts. The procedure builds upon the general interpolation (dashed blue line) that relates the
distributions of publicized and non-publicized contracts. We recover the ∆ by identifying the vertical shift of the distributions
that matches the counterfactual distribution.
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Step 3

In step 3 we rely on the formula from Proposition 4 and use our estimates from above to compute:

F̂γ′(x) =
n1,s

bx
(̂̄γ)− ̂̃n1

bx

∆̂

for x ∈ bx, bx ∈ {b1, ..., 0}, and γ′ = γ − ̂̄γ. This is straightforward given implementation of

steps 1 and 2. We obtain the Fγ′ evaluated at each bin on the lower half of the excluded region

Z1. For values x < b1, we impose Fγ′ = 0, since below the excluded region there is no longer any

influence of price effects. Finally, we then obtain estimates for the rest of the CDF by imposing

symmetry, so that Fγ′(x) = 1− Fγ′(−x).

For all of our estimates, we compute standard errors via bootstrap. We sample with replacement

from the original distribution of contracts, and implement steps 1 through 3, obtaining a set of

estimates θ̂. We repeat this process H times. The standard errors correspond to the empirical

standard deviation of θ̂(h), for h = {1, 2, ..., H}.

D.1.6 RDD Correction for Price Effects and Measurement Error

Consider again the model described in Section D.1. Observed prices as a function of ex-ante prices

are given by:

pt = p̃t + (1− Dt) · ξt + Dt · γt (14)

where pt are observed normalized (i.e. logged and re-centered around 0) award prices, p̃t are

normalized ex-ante prices, Dt ∈ {0, 1} are publicity decisions, γt is the price effect of publicity, and ξt

is measurement error. Let γt ∼ Fγ(·), with E[γt] = µγ and V[γt] = σ2
γ. Let ξt ∼ Fξ(·), with E[ξt] = 0

and V[ξt] = σ2
ξ . Assume γt ⊥ ξt ⊥ p̃t.

To assess the causal impact of Dt on outcomes of interest yt, we assume a piece-wise linear

relationship between expected outcomes and latent ex-ante prices. In particular:

E[yt| p̃t] = 1( p̃t ≤ 0) · (α0 + β0 · p̃t) + 1( p̃t > 0) · (α1 + β1 · p̃t) (15)

For simplicity, we focus on this reduced form relationship, but it would be straightforward to

extend it to a two-equation model with a structural equation relating yt and Dt, and a first-stage

equation relating Dt and p̃t. Our parameters of interest are (α, β) = (α0, α1, β0, β1). In particular, we

focus on (α1 − α0), the reduced form effect at the discontinuity.

The problem we face is that we do not observe a sample analog of E[yt| p̃t], but rather of E[yt|pt].

Our “naive RDD” coefficients correspond to an estimate of
(
limp→0+ E[yt|p]− limp→0− E[yt|p]

)
,

which in general will not be equal to (α1 − α0) =
(
limp̃→0+ E[yt| p̃]− limp̃→0− E[yt| p̃]

)
. Here we
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propose an alternative estimator of (α1 − α0) based on the following proposition.

Proposition 5. Expected outcomes conditional on observed award prices E [yt|pt] can be expressed as an

explicit linear function of the structural parameters (α, β), as well as other variables that we can directly

observe or estimate. In particular:

E [yt|pt] = α0 · ψ1(pt) + β0 · ψ2(pt) + α1 · ψ3(pt) + β1 · ψ4(pt) ,

where ψk(·), k ∈ {1, 2, 3, 4} are explicit functions of observed prices (pt), observed treatment probabilities at

a given price (πD(pt)), and moments of the distributions of price effects and measurement error evaluated at

a given price (Fγ(pt), Fξ(pt)).

Below we derive the explicit expressions for each ψk. We then compute these using our data and

the estimate F̂γ(pt) that we obtained from the density analysis. We also assume no measurement

error, so that ξt = 0 for all t. However, the formulas we derive are general, allowing for any arbitrary

distribution of measurement error. Once we compute these estimates ψ̂k(pt), we use the equation

in Proposition 5 to estimate (α, β) by OLS. We are particularly interested in (α̂OLS
1 − α̂OLS

0 ), which

we then directly compare to the “naive RDD” reduced form coefficients.

D.1.7 Proof of Proposition 5

We now derive the explicit expression for E[yt|pt]. First, we use the Law of Total Probability to

write:

E[yt|pt] = E[yt|pt, p̃t ≤ 0])︸ ︷︷ ︸
Λ1

·Pr( p̃t ≤ 0|pt)︸ ︷︷ ︸
Λ2

+ E[yt|pt, p̃t > 0]︸ ︷︷ ︸
Λ3

·Pr( p̃t > 0|pt)︸ ︷︷ ︸
Λ4

(16)

For each Λk, k ∈ {1, 2, 3, 4}, we find an expression that depends only on magnitudes that we can

directly observe or estimate.

We start with Λ2:

Λ2 = Pr( p̃t ≤ 0|pt)

= Pr( p̃t ≤ 0|pt, Dt = 0) · Pr(Dt = 0|pt) + Pr( p̃t ≤ 0|pt, Dt = 1) · Pr(Dt = 1|pt)

= Pr(pt − ξt ≤ 0|pt) · [1− πD(pt)] + Pr(pt − γt ≤ 0|pt, Dt = 1) · πD(pt)

=
[
1− Fξ(pt)

]
· [1− πD(pt)] + [1− Fγ(pt)] · πD(pt)

≡ Λ2(pt, πD(pt), Fγ(pt), Fξ(pt), α, β)

(17)
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Similarly for Λ4:

Λ4 = Pr( p̃t ≥ 0|pt)

= Pr( p̃t ≥ 0|pt, Dt = 0) · Pr(Dt = 0|pt) + Pr( p̃t ≥ 0|pt, Dt = 1) · Pr(Dt = 1|pt)

= Pr(pt − ξt ≥ 0|pt) · [1− πD(pt)] + Pr(pt − γt ≥ 0|pt, Dt = 1) · πD(pt)

= Fξ(pt) · [1− πD(pt)] + Fγ(pt) · πD(pt)

≡ Λ4(pt, πD(pt), Fγ(pt), Fξ(pt), α, β)

(18)

For Λ1 and Λ3, the analysis is slightly more complicated. First, observe that:

Λ1 = E[yt|pt, p̃t ≤ 0])

= E[α0 + β0 · p̃t|pt, p̃t ≤ 0]

= α0 + β0 · E[ p̃t|pt, p̃t ≤ 0]

= α0 + β0 · {E[ p̃t|pt, p̃t ≤ 0, Dt = 1] · Pr(Dt = 1|pt, p̃t ≤ 0)

+ E[ p̃t|pt, p̃t ≤ 0, Dt = 0] · Pr(Dt = 0|pt, p̃t ≤ 0)}

= α0 + β0 · {E[pt − γt|pt, p̃t ≤ 0, Dt = 1] · Pr(Dt = 1|pt, p̃t ≤ 0)

+ E[pt − ξt|pt, p̃t ≤ 0, Dt = 0] · Pr(Dt = 0|pt, p̃t ≤ 0)}

= α0 + β0 · {(pt − E[γt|γt ≥ pt, pt]) · Pr(Dt = 1|pt, p̃t ≤ 0)

+ (pt − E[ξt|ξt ≥ pt, pt]) · Pr(Dt = 0|pt, p̃t ≤ 0)}

⇐⇒

Λ1 = α0 + β0 · pt + β0 · {E[γt|γt ≥ pt, pt]) · Pr(Dt = 1|pt, p̃t ≤ 0)

− E[ξt|ξt ≥ pt, pt]) · Pr(Dt = 0|pt, p̃t ≤ 0)}
(19)

Now, applying Bayes’ rule to Pr(Dt = 0|pt, p̃t ≤ 0):

Pr(Dt = 0|pt, p̃t ≤ 0) =
Pr( p̃t ≤ 0|Dt = 0, pt) · Pr(Dt = 0|pt)

Pr( p̃t ≤ 0|pt)

=
Pr( p̃t ≤ 0|Dt = 0, pt) · Pr(Dt = 0|pt)

Λ2

=
Pr(pt − ξ ≤ 0|pt) · [1− πD(pt)]

Λ2

=

[
1− Fξ(pt)

]
· [1− πD(pt)]

Λ2

(20)
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And, therefore,

Pr(Dt = 1|pt, p̃t ≤ 0) = 1− Pr(Dt = 0|pt, p̃t ≤ 0)

=
[1− Fγ(pt)] · πD(pt)

Λ2

(21)

Combining (19), (20) and (21) implies:

Λ1 = α0 + β0

[
pt +

E[γt|γt ≥ pt, pt] · [1− Fγ(pt)] · πD(pt)− E[ξt|ξt ≥ pt, pt] ·
[
1− Fξ(pt)

]
· [1− πD(pt)]

Λ2

]
≡ Λ1(pt, πD(pt), Fγ(pt), Fξ(pt), α, β)

(22)

Analogous calculations yield the following expression for Λ3:

Λ3 = α1 + β1

[
pt +

E[γt|γt ≤ pt, pt] · Fγ(pt) · πD(pt)− E [ξt|ξt ≤ pt, pt] · Fξ(pt) · [1− πD(pt)]

Λ4

]
≡ Λ3(pt, πD(pt), Fγ(pt), Fξ(pt), α, β)

(23)

Finally, combining (16), (17), (18), (22), and (23), we obtain:

E[yt|pt] = α0 · ψ1(pt) + β0 · ψ2(pt) + α1 · ψ3(pt) + β1 · ψ4(pt)

where:

ψ1(pt) =
[
1− Fξ(pt)

]
· [1− πD(pt)] + [1− Fγ(pt)] · πD(pt)

ψ2(pt) = ψ1(pt) · pt + E[γt|γt ≥ pt, pt] · [1− Fγ(pt)] · πD(pt)− E[ξt|ξt ≥ pt, pt] ·
[
1− Fξ(pt)

]
· [1− πD(pt)]

ψ3(pt) = Fξ(pt) · [1− πD(pt)] + Fγ(pt) · πD(pt)

ψ4(pt) = ψ3(pt) · pt + E[γt|γt ≤ pt, pt] · Fγ(pt) · πD(pt)− E [ξt|ξt ≤ pt, pt] · Fξ(pt) · [1− πD(pt)]

D.1.8 Accounting for Bunching

A standard test for the validity of the RDD framework consists on verifying the continuity of the

density of the running variable around the threshold. If the running variable is not distributed

smoothly around the cutoff, then it is said to be “manipulated”. In recent work, Gerard, Rokkanen,

and Rothe (2020) show that, while point identification of causal effects is infeasible in this case, it is

possible to obtain sharp bounds on the effects of interest.

In their model, the extent of manipulation can be quantified as the excess bunching in the density
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of the running variable below the threshold. While one cannot identify which are the units below

the threshold that are manipulating, the excess bunching πB tells us what share of the observed

units are in this group. Bounds on treatment effects are then computed by excluding a share πB of

the observations below the threshold, in ways that yield the most extreme values for the estimate.

This process can be quite involved in general, since one does not know the treatment assignment

of the units that manipulate. This transforms the computation of the bounds in an optimization

problem, searching for the worst- and best-case scenarios in terms of how outcomes are distributed

across treatment groups below the threshold.

However, our setting allows us to make a behavioral assumption that tremendously simplifies

the problem. In particular, our model assumes that all units that manipulate the ex-ante price to

bunch below the threshold, successfully avoid the publicity mandate.Therefore, our model implies

that the share πB of units that manipulate all belong to the control group (Dt = 0). Bounds on

treatment effects are straightforwardly obtained in this case, by simply chopping the tails of the

distribution of outcomes Yt below the threshold for units in the control group.

In practice, we implement this procedure as follows. For each bin b closely below the threshold:

1. Compute the excess bunching in the control group, as BUNCHb = (n0
b −

̂̃n0
b), obtained from

our density analysis.

2. Sort control units according to the outcome variable Y0
b .

3. Drop the BUNCHb units with the highest value of Y0
b . Compute treatment effects. This yields

the lower bound.

4. Drop the BUNCHb units with the lowest value of Y0
b . Compute treatment effects. This yields

the upper bound.
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E Discussion on Modeling of Execution Performance

We measure execution performance by the magnitude of cost-overruns, which we model based on

two important assumptions:

1. The ex-post realization of qt is not strategic, but a result of a type-specific shock. This

assumption is in line with related papers (Bajari et al., 2014; Eun, 2018; Ryan, 2020). It is

also consistent with the reduced-form evidence discussed in Section 3.5, where we find that

variation in the competitive environment does not generate changes in firm performance in

terms of cost overruns or delays. We, therefore, think of contract execution as a stochastic

realization that depends on a production technology that is fixed—at least in the short run—,

and that cannot be modified after observing the competitive environment.

2. The ex-post realization of qt is fully passed through to the buyer. This implies that cost

overruns do not enter the utility function of the firm. Modelling choices in related papers

are context-specific in this regard. For example, Bajari et al. (2014) and Eun (2018) study

highway construction and consider that ex-post cost-overruns negatively affect firms’ utility

as they involve costly re-negotiations and additional layers of bureaucracy. On the other hand,

Ryan (2020) studies energy procurement and highlights that certain firms (e.g., politically

connected) take advantage of these shocks to obtain better conditions.

In our setting, contract ex-post modifications do not involve major bureaucratic hurdles

beyond clarifying that the amendment is needed and that it involves unbudgeted costs that

can be justified with invoices. So the assumption that cost shocks are fully passed through

resonates with the particularities of our institutional context. However, note that even if

the model was misspecified, future overruns would only affect firm behavior in expectation

due to risk neutrality. Moreover, if expected overruns do affect firms’ utility, the estimated

distributions of production and entry costs would be shifted by an (unknown) amount

reflecting a “taste for overruns” , i.e., ĉjt = cjt + ψ ·E[qjt], where ψ is a taste parameter that

could be positive or negative. Importantly, if we did impose such structure, there would

be a limit to what we could identify. Related papers (e.g., Ryan (2020); Bajari et al. (2014))

are explicit about how ψ enters in the utility function, yet they impose this richer structure

at the expense of assuming that firms are symmetric. Instead, we allow for full flexibility

in the asymmetry of all primitive distributions between locals and non-locals, but at the

expense of being agnostic about ψ. We argue that our modeling choice in this regard takes

better advantage of the variation available in our data and provides more flexibility to our

counterfactual exercises.
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F Model Identification

Lemma 1. The expected k-th order statistic of B with n draws can be written in terms of the expected k-th

and (k + 1)-th order statistics with n + 1 draws

Proof. The probability density function of B is gB(b), then the k-th order statistic of B, g
B(n)

k
(b), is:

g
B(n)

k
(b) = k

(
n
k

)
gB(b)GB(b)k−1 [1− GB(b)]

n−k

=
n!

(n− k)!(k− 1)!
fB(b)GB(b)k−1 [1− GB(b)]

n−k

Thus, the difference is expected k-th order statistics with n and n + 1 actual competitors is
expressed as follows:

E[B(n)
k ]−E[B(n+1)

k ] =
∫ b̄

b
bg

B(n)
k
(b)db−

∫ b̄

b
bg

B(n+1)
k

(b)db

=
∫ b̄

b
bk
(

n
k

)
gB(b)GB(b)k−1 [1− GB(b)]

n−k db−
∫ b̄

b
bk
(

n + 1
k

)
gB(b)GB(b)k−1 [1− GB(b)]

n+1−k db

=
∫ b̄

b

(
n!(n + 1− k)− (n + 1)! [1− GB(b)]

(k− 1)!(n + 1− k)!

)
bgB(b)GB(b)k−1 [1− GB(b)]

n−k db

=
∫ b̄

b

(
(n + 1)!GB(b)− n!k
(k− 1)!(n + 1− k)!

)
bgB(b)GB(b)k−1 [1− GB(b)]

n−k db

=
∫ b̄

b

(n + 1)!
(k− 1)!(n + 1− k)!

bgB(b)GB(b)k [1− GB(b)]
n−k db

−
∫ b̄

b

n!k
(k− 1)!(n + 1− k)!

bgB(b)GB(b)k−1 [1− GB(b)]
n−k db

=
k

(n + 1− k)

(
E[B(n+1)

k+1 ]−E[B(n)
k ]
)

Rearranging the terms, we get the expected k-th order statistic of n draws can be expressed as a

simple weighted average of the k-th and k + 1-th order statistic under n + 1 draws:

E[B(n)
k ] =

k
n + 1

E[B(n+1)
k+1 ] +

n + 1− k
n + 1

E[B(n+1)
k ] (24)

F.1 Identification under Unobserved Heterogeneity

Below we show that identification can be achieved when only the winning bid and the number of

(symmetric) bidders are observed as long as the number of bidders is exogenous. In particular, in

our setting, bidders define bidding strategies without knowing the actual number of bidders, n, but

based on beliefs about market conditions. Thus, n is exogenous conditional on (N, ϕ). We leverage
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variation in actual bidders to separately identify the private and the common cost components’

distributions. To ease notation, we omit (N, ϕ) as conditions for exogeneity of n.

Proposition 6. First price auctions with unobserved heterogeneity can be identified when only the winning

bid and the number of bidders are observed as long as the number of active bidders is exogenous.

Proof. The ratio of first-order statistics is identified by comparing observed winning bids for

different values of n:

1
Tn,N

∑t(B1,t|nt = n)
1

Tn′ ,N
∑t(B1,t|nt = n′)

→ E[B1:n]

E[B1:n′ ]
=

E[B̃1:n · u]
E[B̃1:n′ · u]

=
E[B̃1:n] ·E[u]
E[B̃1:n′ ] ·E[u]

=
E[B̃1:n]

E[B̃1:n′ ]
(25)

where (B1,t|nt = n) is auction’s t observed winning bid with n active bidders. E[B̃1:n] is the

expected first order statistic normalized based on ut = 1. Finally, u is assumed independent of the

number of bidders and cancels out in the last identity. The normalization E[u] = 1 pins down the

scale of the first order statistics.

By contradiction; assume (Ĝb̃, Ĥu) provide the same distribution observed in the data,

B̃1:nu d
= ˆ̃B1:nû

B̃1:n′u
d
= ˆ̃B1:n′ û

Construct b̃∗n′ ,
˜̂b∗n′ ũ

∗, and ˜̂u∗ as random variables that are independent of and have the same

conditional distributions as their asterisk-free counterparts. Then it follows that

(B̃1:nu) ·
(

ˆ̃B∗1:n′ û
∗
)

d
=

(
ˆ̃B1:nû

)
·
(

B̃∗1:n′u
∗)

=⇒ B̃1:n · ˆ̃B∗1:n′
d
= ˆ̃B1:n · B̃∗1:n′ (26)

Taking expectations on both sides:

E[B̃1:n] ·E[ ˆ̃B1:n′ ] = E[ ˆ̃B1:n] ·E[B̃1:n′ ]

E[B̃1:n]

E[B̃1:n′ ]
=

E[ ˆ̃B1:n]

E[ ˆ̃B1:n′ ]

If (Ĝb̃, Ĥu) rationalizes the data, it has a normalized distribution with the same ratio of first

order statistics. Using, order statistic’s recurrence relation (Lemma 1), we have that E[B1:n−1] =
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1
n E[B2:n] +

n−1
n E[B1:n], we can link together these ratios when n′ = n− 1:

E[B̃1:n]

E[B̃1:n′ ]
=

E[ ˆ̃B1:n]

E[ ˆ̃B1:n′ ]

E[B̃1:n]
1
n E[B̃2:n] +

n−1
n E[B̃1:n]

=
E[ ˆ̃B1:n]

1
n E[B̂2:n] +

n−1
n E[ ˆ̃B1:n]

E[B̃1:n]

E[B̃2:n]
=

E[ ˆ̃B1:n]

E[ ˆ̃B2:n]

Ĝb̃ has the same ratio of second-order statistics. With sequential values of n ∈ {2, . . . , N}, we

can iterate forward from the identified first-order and second-order statistics using the recursive

relation between order statistics from Proposition 1. Therefore, Gb̃ and Ĝb̃ are identical up to the

first N order statistics from B̃

Corollary 2. The distribution of the unobserved heterogeneity, Hu is obtained once Gb̃ is identified.

Proof. By Independence of B̃ and u, leveraging basic properties of characteristic functions we can

write ψlog(B1:n) = ψlog(B̃1:n)
ψlog(u), where ψlog(B1:n) is the characteristic function of the log of observed

winning bids under n active bidders. We can construct this characteristic function for different

values of n. Once the characteristic function of Gb̃ is obtained, we can pin down Hu

Corollary 3. The distribution of normalized private costs, Fc̃ is identified once Gb̃ and equilibrium entry

probabilities are obtained.

This corollary follows from Guerre et al. (2000). If the distribution of Gb̃ is recovered, and the

equilibrium entry probabilities are observed from entry choices. Then, we can use the first order

and the boundary conditions to recover the latent distribution Fc̃.
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G Model Estimation Details

G.1 Classifying Contractors’ Types

Based on the patterns of contractor’s participation, we identify two separate groups of firms:

contractors who win awards without relying on publicity —which we refer to as locals—, and

contractors that only win when contract solicitations are publicized —which we label non-locals.

The logic is that, if a contractor wins without publicity, this indicates that the buyer informed

her directly (e.g. through email or a phone call). The existence of direct communication reveals

a buyer’s preference for these contractors. Conversely, if a contractor requires a FedBizzOpps

announcement to participate (and win), this suggests that there is no specific preference from that

buyer for that contractor. This distinction came up frequently in conversations with procurement

officers from several organizations.

To classify contractors empirically, we restrict the analysis to buyer-product combinations that

are observed at least 4 times between 2013 and 2019, and which had at least one —but not all—

contracts publicized.55 Table B.6 compares buyer-contractor distance and performance for contracts

performed by local and non-locals. The third column shows the mean difference of performance

between these two groups. As a reference, if the information source is irrelevant, locals and non-

locals would have similar outcomes. However, we observe that contracts executed by non-local

contractors experience 16 percentage points (200%) more cost-overruns and 14.5 percentage points

(110%) more delays than locals.

G.2 Estimation

Denote the target moments by mn as a vector of moments from the data. The simulated moments

are denoted by ms(θ). The depends on the parameters θ ∈ Θ ⊂ RP. The estimator minimizes the

standard distance metric:

θ̂ = argmin
θ

(mn −ms(θ))
′Wn (mn −ms(θ))

Where Wn is the weighting matrix, which is chosen using the standard two-step approach.

Letting Ms(θ) be the (P× J) Jacobian matrix of the vector of simulated moments; under standard

regularity assumptions, we have:

55We noted that the Federal Procurement Data System (FPDS) sometimes missclassifies local buyers, assigning the
same code to different branches that depend on a single (higher-level) office. This contrasts with the nature of most
procurement officers’ job, who typically contract within a particular area, leveraging their local market knowledge. We
address this misclassification by defining a buyer based on the office code and the Metropolitan Statistical Area (MSA) of
the purchase. As before, the definition of a product category is given by the 4-digit PSC code.
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√
n
(
θ̂ − θ0

) d−→ N
(

0,
(

1 +
1
s

)
(M′WM)−1M′WΩW ′M(M′WM)−1

)
(27)

where W is the probability limit of Wn, M is the probability limit of Ms(θ0), and Ω is

the asymptotic variance of mn (Pakes and Pollard, 1989). The vector of parameters is: θ =

(αk, νk, τk, γk, ξk,~λ, ζ,~σ).

G.2.1 Standard Errors

We compute standard errors using the asymptotic variance formula given by (27). The variance-

covariance matrix of θ̂ is:

V(θ̂) =
1
n

(
1 +

1
s

)
(M̂′WM̂)−1M̂′WΩ̂W ′M̂(M̂′WM̂)−1

Where Ω̂ is estimated via bootstrap: re-sampling contracts with replacement from the original

data, and recompute the smoothed vector of moments, repeating this process 500 times. Ω̂ is the

sample variance of these 500 vectors. M̂ is the numeric derivative of the SMM objective function (7)

evaluated at θ̂.

G.2.2 Minimization

We keep constant the underlying random draws throughout the minimization of the objective

function. Nonetheless, the simulated objective is not continuous with respect to θ. Thus, We

leverage the stochastic optimization algorithm Differential Evolution (Storn and Price, 1997) to

perform the objective minimization. This algorithm does not rely on gradient methods, and given

its heuristic approach for minimizing possibly nonlinear and non-differentiable continuous space

functions, it is robust to poorly behaved objectives.

G.3 Moments

We use three sets of target moments.

• First set of moments,

– ~m11 = E[x(y)t
′yt] and ~m12 = E[x(y)t

′y2
t ], where yt = log winning bid, number of bidders, wins

local, log overruns, and contract is publicized, and x(y)t = (1,~x(y)t ) = covariates associated

with outcome variable y

• Second set:
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– ~m2 = E[yt|Bt ∈ (Bl , Bl+1)], for l ∈ {1, . . . , L − 1}, where yt = number of bidders, wins

local, log overruns, and contract is publicized. We separate these moments based on goods

and services, and partition the domain of contract prices in bins of width $1,000

• Third set of moments:

– ~m3 = E[1{bt ∈ (bl , bl+1)}], for l ∈ {1, . . . , L − 1}. This set of moments correspond to

the normalized frequencies on the relevant window of contract prices. The bin width is

$1,000.

As a result we use 357 moments to estimate 37 parameters.
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